Menjawab:
Penjelasan:
Ekspresi awal Anda terlihat seperti ini
#sqrt (24) - sqrt (54) + sqrt (96) #
Untuk mencoba dan menyederhanakan ungkapan ini, tuliskan setiap nilai yang Anda miliki di bawah akar kuadrat sebagai produk dari faktor prima.
Ini akan membantu Anda
#24 = 2^3 * 3 = 2^2 * 2 * 3#
#54 = 2 * 3^3 = 2 * 3^2 * 3 = 3^2 * 2 * 3#
#96 = 2^5 * 3 = 2^4 * 2 * 3#
Perhatikan bahwa setiap angka dapat ditulis sebagai produk antara a kotak sempurna dan
#sqrt (24) = sqrt (2 ^ 2 * 6) = sqrt (2 ^ 2) * sqrt (6) = 2sqrt (6) #
#sqrt (54) = sqrt (3 ^ 2 * 6) = sqrt (3 ^ 2) * sqrt (6) = 3sqrt (6) #
#sqrt (96) = sqrt (2 ^ 4 * 6) = sqrt (2 ^ 4) * sqrt (6) = 2 ^ 2sqrt (6) = 4sqrt (6) #
Ekspresi demikian dapat ditulis sebagai
# 2sqrt (6) - 3sqrt (6) + 4sqrt (6) #
yang sama dengan
#sqrt (6) * (2 - 3 + 4) = warna (hijau) (3sqrt (6)) #
Apakah [5 (akar kuadrat dari 5) + 3 (akar kuadrat dari 7)] / [4 (akar kuadrat dari 7) - 3 (akar kuadrat dari 5)]?
(159 + 29sqrt (35)) / 47 warna (putih) ("XXXXXXXX") dengan asumsi saya tidak membuat kesalahan aritmatika (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Rasionalisasi penyebut dengan mengalikan dengan konjugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Berapakah akar kuadrat dari 225 dikurangi akar kuadrat dari 15 ditambah akar kuadrat dari 60?
Sqrt (225) -sqrt (15) + sqrt (60) = 15 + sqrt (15) ~~ 18.8729833462 Jika a, b> = 0 lalu sqrt (ab) = sqrt (a) sqrt (b) Oleh karena itu: sqrt (225) ) -sqrt (15) + sqrt (60) = sqrt (15 ^ 2) -sqrt (15) + sqrt (2 ^ 2 * 15) = 15-sqrt (15) + 2sqrt (15) = 15 + sqrt (15) )
Berapakah akar kuadrat dari 7 + akar kuadrat dari 7 ^ 2 + akar kuadrat dari 7 ^ 3 + akar kuadrat dari 7 ^ 4 + akar kuadrat dari 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Hal pertama yang dapat kita lakukan adalah membatalkan root pada yang memiliki kekuatan genap. Karena: sqrt (x ^ 2) = x dan sqrt (x ^ 4) = x ^ 2 untuk semua nomor, kita dapat mengatakan bahwa sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sekarang, 7 ^ 3 dapat ditulis ulang sebagai 7 ^ 2 * 7, dan 7 ^ 2 itu bisa keluar dari root! Hal yang sama berlaku untuk 7 ^ 5 tetapi ditulis ulang sebagai 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 +