Apa ekstrem absolut dari f (x) = sin2x + cos2x dalam [0, pi / 4]?

Apa ekstrem absolut dari f (x) = sin2x + cos2x dalam [0, pi / 4]?
Anonim

Menjawab:

Maks absolut: #x = pi / 8 #

Min absolut. ada di titik akhir: #x = 0, x = pi / 4 #

Penjelasan:

Temukan turunan pertama menggunakan aturan rantai:

Membiarkan #u = 2x; kamu '= 2 #jadi #y = sinu + cos u #

#y '= (cosu) u' - (sinu) u '= 2cos2x - 2sin2x #

Temukan angka-angka penting dengan pengaturan #y '= 0 # dan faktor:

# 2 (cos2x-sin2x) = 0 #

Kapan #cosu = sinu #? kapan #u = 45 ^ @ = pi / 4 #

begitu #x = u / 2 = pi / 8 #

Temukan turunan ke-2: #y '' = -4sin2x-4cos2x #

Periksa untuk melihat apakah Anda memiliki maks # pi / 8 # menggunakan tes turunan ke-2:

#y '' (pi / 8) ~~ -5.66 <0 #oleh karena itu # pi / 8 # adalah nilai absolut dalam interval.

Periksa titik akhir:

#y (0) = 1; y (pi / 4) = 1 # nilai minimum

Dari grafik:

grafik {sin (2x) + cos (2x) -.1,.78539816, -.5, 1.54}

Menjawab:

# 0 dan sqrt2 #. Lihat grafik Sokrates yang ilustratif.

Penjelasan:

grafik(Menggunakan # | sin (theta) | dalam 0, 1 #.

# | f | = | sin2x + cos2x | #

# sqrt2 | sin2x cos (pi / 4) + cosx sin (pi / 4) | #

# = sqrt2 | sin (2x + pi / 4) | dalam 0, sqrt 2 #.