Menjawab:
Operasi yang ketika dijalankan pada angka mengembalikan nilai yang ketika dikalikan dengan sendirinya mengembalikan nomor yang diberikan.
Penjelasan:
Operasi yang ketika dijalankan pada angka mengembalikan nilai yang ketika dikalikan dengan sendirinya mengembalikan nomor yang diberikan.
Mereka memiliki formulir
Perhatikan bahwa jika Anda dibatasi pada nilai dalam bilangan real, angka yang Anda ambil akar kuadratnya harus positif karena tidak ada bilangan real yang bila dikalikan bersama akan memberi Anda angka negatif.
Apa itu (akar kuadrat 2) + 2 (akar kuadrat 2) + (akar kuadrat 8) / (akar kuadrat 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 dapat dinyatakan sebagai warna (merah) (2sqrt2 ekspresi sekarang menjadi: (sqrt (2) + 2sqrt (2) + 2 (sqs)) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 dan sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Apa itu (akar kuadrat dari [6] + 2 akar kuadrat dari [2]) (akar kuadrat dari [6] - 3 akar kuadrat dari 2)?
12 + 5sqrt12 Kami mengalikan cross-multiply, yaitu, (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) sama dengan sqrt6 * 4sqrt6 + 2sqrt6 * 2sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 dengan akar kata sama dengan waktu akar jadi 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Kami menempatkan sqrt2sqrt6 sebagai bukti: 24 + (8-3) sqrt6sqrt2 - 12 Kita dapat menggabungkan dua akar ini dalam satu, setelah semua sqrtxsqrty = sqrt (xy) selama mereka ' re keduanya tidak negatif. Jadi, kita mendapatkan 24 + 5sqrt12 - 12 Akhirnya, kita hanya mengambil perbedaan dari dua konstanta dan menyebutnya sehari 12 + 5sqrt12
Berapakah akar kuadrat dari 7 + akar kuadrat dari 7 ^ 2 + akar kuadrat dari 7 ^ 3 + akar kuadrat dari 7 ^ 4 + akar kuadrat dari 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Hal pertama yang dapat kita lakukan adalah membatalkan root pada yang memiliki kekuatan genap. Karena: sqrt (x ^ 2) = x dan sqrt (x ^ 4) = x ^ 2 untuk semua nomor, kita dapat mengatakan bahwa sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sekarang, 7 ^ 3 dapat ditulis ulang sebagai 7 ^ 2 * 7, dan 7 ^ 2 itu bisa keluar dari root! Hal yang sama berlaku untuk 7 ^ 5 tetapi ditulis ulang sebagai 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 +