Menjawab:
Nol dari f (x) adalah
Penjelasan:
biarkan f (x) = 0
ambil akar kuadrat dari kedua sisi
x =
Menjawab:
Penjelasan:
# "untuk menemukan nol yang diset" f (x) = 0 #
#rArrf (x) = x ^ 2-169 = 0 #
# rArrx ^ 2 = 169 #
#warna (biru) "ambil akar kuadrat dari kedua sisi" #
#rArrx = + - sqrt (169) larrcolor (biru) "note plus atau minus" #
#rArrx = + - 13larrcolor (biru) "adalah nol" #
Menjawab:
Penjelasan:
Kami memanggil nol fungsi ke nilai-nilai tersebut
Dalam kasus kami, kami harus menyelesaikannya
Istilah transposing, kami punya
Grafik fungsi f (x) = (x + 2) (x + 6) ditunjukkan di bawah ini. Pernyataan mana tentang fungsi yang benar? Fungsi ini positif untuk semua nilai riil x di mana x> –4. Fungsi ini negatif untuk semua nilai riil x di mana –6 <x <–2.
Fungsi ini negatif untuk semua nilai riil x di mana –6 <x <–2.
Nol dari fungsi f (x) adalah 3 dan 4, sedangkan nol dari fungsi kedua g (x) adalah 3 dan 7. Berapakah nol dari fungsi y = f (x) / g (x )?
Hanya nol dari y = f (x) / g (x) adalah 4. Karena nol dari fungsi f (x) adalah 3 dan 4, ini berarti (x-3) dan (x-4) adalah faktor-faktor dari f (x ). Selanjutnya, nol dari fungsi kedua g (x) adalah 3 dan 7, yang berarti (x-3) dan (x-7) adalah faktor-faktor dari f (x). Ini berarti dalam fungsi y = f (x) / g (x), meskipun (x-3) harus membatalkan penyebut g (x) = 0 tidak didefinisikan, ketika x = 3. Itu juga tidak didefinisikan ketika x = 7. Karenanya, kami memiliki lubang di x = 3. dan hanya nol dari y = f (x) / g (x) adalah 4.
Manakah karakteristik grafik fungsi f (x) = (x + 1) ^ 2 + 2? Periksa semua yang berlaku. Domain adalah semua bilangan real. Kisarannya adalah semua bilangan real lebih besar dari atau sama dengan 1. Y-intersep adalah 3. Grafik fungsi adalah 1 unit ke atas dan
Pertama dan ketiga benar, kedua salah, keempat tidak selesai. - Domain ini memang semua bilangan real. Anda dapat menulis ulang fungsi ini sebagai x ^ 2 + 2x + 3, yang merupakan polinomial, dan karena itu memiliki domain mathbb {R} Kisarannya tidak semua bilangan real lebih besar dari atau sama dengan 1, karena minimumnya adalah 2. Dalam fakta. (x + 1) ^ 2 adalah terjemahan horizontal (satu unit tersisa) dari parabola "strandard" x ^ 2, yang memiliki rentang [0, infty). Ketika Anda menambahkan 2, Anda menggeser grafik secara vertikal dengan dua unit, sehingga rentang Anda adalah [2, infty) Untuk menghitung inters