Menjawab:
Ada dua langkah: (1) menemukan produk silang dari vektor, (2) menormalkan vektor yang dihasilkan. Dalam hal ini, jawabannya adalah:
Penjelasan:
Produk silang dari dua vektor menghasilkan vektor yang ortogonal (pada sudut kanan) untuk keduanya.
Produk silang dari dua vektor
Langkah pertama adalah menemukan produk silang:
Vektor ini ortogonal untuk kedua vektor aslinya, tetapi ini bukan vektor satuan. Untuk menjadikannya unit vektor, kita perlu menormalkannya: bagi setiap komponennya dengan panjang vektor.
Vektor unit orthogonal ke vektor aslinya adalah:
Ini adalah satu unit vektor yang ortogonal untuk kedua vektor asli, tetapi ada yang lain - satu dalam arah yang berlawanan. Cukup mengubah tanda dari masing-masing komponen menghasilkan vektor kedua orthogonal ke vektor aslinya.
(tapi itu vektor pertama yang harus Anda tawarkan sebagai jawaban pada ujian atau tugas!)
Berapakah vektor satuan yang ortogonal pada bidang yang berisi (i + j - k) dan (i - j + k)?
Kita tahu bahwa jika vec C = vec A × vec B maka vec C tegak lurus terhadap vec A dan vec B Jadi, yang kita butuhkan hanyalah menemukan produk silang dari dua vektor yang diberikan. Jadi, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Jadi, vektor satuan adalah (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Berapakah vektor satuan yang ortogonal pada bidang yang berisi (20j + 31k) dan (32i-38j-12k)?
Vektor satuan adalah == 1 / 1507.8 <938.992, -640> Vektor ortogonal hingga 2 vektro dalam bidang dihitung dengan determinan | (veci, vecj, veck), (d, e, f), (g, h, i) | di mana 〈d, e, f〉 dan 〈g, h, i〉 adalah 2 vektor Di sini, kita memiliki veca = 〈0,20,31〉 dan vecb = 〈32, -38, -12〉 Karenanya, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + lihat | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 〈938.992, -640〉 = verifikasi Verifikasi dengan melakukan 2 titik produk 〈938.992, -640〉. 〈0,20,31〉 = 938 * 0 + 9
Berapakah vektor satuan yang ortogonal pada bidang yang berisi (29i-35j-17k) dan (41j + 31k)?
Vektor satuan adalah = 1 / 1540,3 〈-388, -899.1111〉 Vektor tegak lurus terhadap 2 vektor dihitung dengan determinan (produk silang) | (veci, vecj, veck), (d, e, f), (g, h, i) | di mana 〈d, e, f〉 dan 〈g, h, i〉 adalah 2 vektor Di sini, kita memiliki veca = 〈29, -35, -17〉 dan vecb = 〈0,41,31〉 Karena itu, | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + lihat | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = 〈- 388, -899,1189〉 = verifikasi Verifikasi dengan melakukan 2 produk titik 〈-388, -899,1189〉. 〈29, -35, -17