Menjawab:
# 3x ^ 3 - 82x ^ 2 + 637x - 1078 #
Penjelasan:
Diperlukan untuk mendistribusikan kurung. Dimulai dengan pasangan pertama dan menggunakan FOIL.
# (3x - 7) (x - 14) = 3x ^ 2 - 42x - 7x + 98 # 'collect like terms' memberikan:
# 3x ^ 2 - 49x + 98 # Ini sekarang perlu dikalikan dengan (x - 11)
# (3x ^ 2 - 49x +98) (x - 11) # setiap istilah di braket ke-2 harus dikalikan dengan setiap istilah di braket ke-1. Ini dicapai dengan yang berikut:
# 3x ^ 2 (x-11) - 49x (x-11) +98 (x-11) #
# = 3x ^ 3 - 33x ^ 2 - 49x ^ 2 + 539x + 98x - 1078 # menulis dalam bentuk standar berarti dimulai dengan istilah dengan eksponen x terbesar dan kemudian istilah dengan istilah eksponen menurun.
#rArr 3x ^ 3 -82x ^ 2 + 637x -1078 #
Bentuk titik-kemiringan dari persamaan garis yang melewati (-5, -1) dan (10, -7) adalah y + 7 = -2 / 5 (x-10). Apa bentuk standar dari persamaan untuk baris ini?
2 / 5x + y = -3 Format bentuk standar untuk persamaan garis adalah Ax + By = C. Persamaan yang kita miliki, y + 7 = -2/5 (x-10) saat ini dalam point- bentuk kemiringan. Hal pertama yang harus dilakukan adalah mendistribusikan -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Sekarang mari kita kurangi 4 dari kedua sisi persamaan: y + 3 = -2 / 5x Karena persamaannya harus Ax + By = C, mari kita pindahkan 3 ke sisi lain dari persamaan dan -2 / 5x ke sisi lain dari persamaan: 2 / 5x + y = -3 Persamaan ini sekarang dalam bentuk standar.
Bentuk standar dari persamaan parabola adalah y = 2x ^ 2 + 16x + 17. Apa bentuk verteks dari persamaan?
Bentuk simpul umum adalah y = a (x-h) ^ 2 + k. Silakan lihat penjelasan untuk formulir simpul khusus. "A" dalam bentuk umum adalah koefisien dari istilah kuadrat dalam bentuk standar: a = 2 Koordinat x dalam vertex, h, ditemukan menggunakan rumus: h = -b / (2a) h = - 16 / (2 (2) h = -4 Koordinat y dari vertex, k, ditemukan dengan mengevaluasi fungsi yang diberikan pada x = h: k = 2 (-4) ^ 2 + 16 (-4) +17 k = -15 Mengganti nilai-nilai ke dalam bentuk umum: y = 2 (x - 4) ^ 2-15 larr bentuk verteks spesifik
Bentuk verteks dari persamaan parabola adalah x = (y - 3) ^ 2 + 41, apa bentuk standar dari persamaan?
Y = + - sqrt (x-41) +3 Kita harus menyelesaikannya untuk y. Setelah kita selesai melakukannya, kita dapat memanipulasi sisa masalah (jika perlu) untuk mengubahnya ke bentuk standar: x = (y-3) ^ 2 + 41 kurangi 41 di kedua sisi x-41 = (y -3) ^ 2 mengambil akar kuadrat dari kedua sisi warna (merah) (+ -) sqrt (x-41) = y-3 tambahkan 3 ke kedua sisi y = + - sqrt (x-41) +3 atau y = 3 + -sqrt (x-41) Bentuk standar dari fungsi Root Square adalah y = + - sqrt (x) + h, jadi jawaban akhir kita harus y = + - sqrt (x-41) +3