Menjawab:
Ini disebut hukum asosiatif multiplikasi.
Lihat buktinya di bawah ini.
Penjelasan:
(1)
(2)
(3)
(4)
Perhatikan bahwa ekspresi akhir untuk vektor di (2) sama dengan ekspresi akhir untuk vektor di (4), hanya urutan penjumlahan yang diubah.
Akhir dari bukti.
Biarkan M menjadi matriks dan vektor u dan v: M = [(a, b), (c, d)], v = [(x), (y)], u = [(w), (z)] . (a) Usulkan definisi untuk u + v. (b) Tunjukkan bahwa definisi Anda mematuhi Mv + Mu = M (u + v)?
Definisi penambahan vektor, perkalian matriks dengan vektor dan bukti hukum distributif ada di bawah ini. Untuk dua vektor v = [(x), (y)] dan u = [(w), (z)] kami mendefinisikan operasi penambahan sebagai u + v = [(x + w), (y + z)] Perkalian matriks M = [(a, b), (c, d)] dengan vektor v = [(x), (y)] didefinisikan sebagai M * v = [(a, b), (c, d )] * [(x), (y)] = [(kapak + oleh), (cx + dy)] Secara analog, perkalian matriks M = [(a, b), (c, d)] oleh vektor u = [(w), (z)] didefinisikan sebagai M * u = [(a, b), (c, d)] * [(w), (z)] = [(aw + bz), (cw + dz)] Mari kita periksa hukum distributif dari definisi tersebut: M * v + M * u
Biarkan sudut antara dua vektor bukan nol A (vektor) dan B (vektor) menjadi 120 (derajat) dan hasilnya adalah C (vektor). Lalu manakah dari yang berikut ini yang benar?
Opsi (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad abs persegi (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad triangle abs (bbA - bbB) ^ 2 - C ^ 2 = segitiga - persegi = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)
Biarkan [(x_ (11), x_ (12)), (x_21, x_22)] didefinisikan sebagai objek yang disebut matriks. Penentu matriks didefinisikan sebagai [(x_ (11) xxx_ (22)) - (x_21, x_12)]. Sekarang jika M [(- 1,2), (-3, -5)] dan N = [(- 6,4), (2, -4)] apa yang menjadi penentu M + N & MxxN?
Faktor penentu adalah M + N = 69 dan MXN = 200ko Orang perlu menentukan jumlah dan produk matriks juga. Tetapi diasumsikan di sini bahwa mereka sama seperti yang didefinisikan dalam buku teks untuk matriks 2xx2. M + N = [(- 1,2), (- 3, -5)] + [(- 6,4), (2, -4)] = [(- 7,6), (- 1, - 9)] Oleh karena itu determinannya adalah (-7xx-9) - (- 1xx6) = 63 + 6 = 69 MXN = [(((- 1) xx (-6) + 2xx2), ((- 1) xx4 + 2xx (-4))), (((- 1) xx2 + (- 3) xx (-4)), ((- 3) xx4 + (- 5) xx (-4)))] = [(10, -12 ), (10,8)] Karena itu deeminan MXN = (10xx8 - (- 12) xx10) = 200