Menjawab:
Penjelasan:
Kemiringan garis singgung pada x = 4 adalah
mari kita temukan
membiarkan
Begitu,
kemudian
Untuk menemukan kemiringan garis singgung pada x = 4 kita perlu menghitung f '(4)
Kami mengevaluasi f '(x) jadi lrt kami mengganti x dengan 4
Kemiringan garis singgung ini adalah 123/16
Memiliki
Persamaan garis singgung adalah:
Apa persamaan garis tangen dari f (x) = 6x-x ^ 2 pada x = -1?
Lihat di bawah: Langkah pertama adalah menemukan turunan pertama dari f. f (x) = 6x-x ^ 2 f '(x) = 6-2x Oleh karena itu: f' (- 1) = 6 + 2 = 8 Nilai signifikansi 8 adalah bahwa ini adalah gradien f di mana x = - 1. Ini juga gradien dari garis singgung yang menyentuh grafik f pada titik itu. Jadi fungsi garis kita saat ini adalah y = 8x Namun, kita juga harus menemukan intersep-y, tetapi untuk melakukan ini, kita juga memerlukan koordinat y pada titik di mana x = -1. Tancapkan x = -1 ke f. f (-1) = - 6- (1) = - 7 Jadi titik pada garis tangen adalah (-1, -7) Sekarang, menggunakan rumus gradient, kita dapat menemukan p
Apa persamaan garis tangen dari r = tan ^ 2 (theta) - sin (theta-pi) pada theta = pi / 4?
R = (2 + sqrt2) / 2 r = tan ^ 2 theta- sin (theta - pi) di pi / 4 r = tan ^ 2 (pi / 4) - sin (pi / 4 -pi) r = 1 ^ 2 - sin ((- 3pi) / 4) r = 1-sin ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2 r = (2 + sqrt2) / 2
Apa persamaan garis tangen dari f (x) = 14x ^ 3-4x ^ 2e ^ (3x) pada x = -2?
Temukan f (-2) dan f '(- 2) kemudian gunakan rumus garis singgung. Persamaan garis singgung adalah: y = 167,56x + 223,21 f (x) = 14x ^ 3-4x ^ 2e ^ (3x) Temukan fungsi turunan: f '(x) = (14x ^ 3)' - ( 4x ^ 2e ^ (3x)) 'f' (x) = 14 (x ^ 3) '- 4 [(x ^ 2)' e ^ (3x) + 4x ^ 2 (e ^ (3x)) '] f '(x) = 14 * 3x ^ 2-4 [2xe ^ (3x) + 4x ^ 2 * e ^ (3x) * (3x)'] f '(x) = 42x ^ 2-4 [2xe ^ (3x) ) + 4x ^ 2 * e ^ (3x) * 3] f '(x) = 42x ^ 2-4 [2xe ^ (3x) + 12x ^ 2 * e ^ (3x)] f' (x) = 42x ^ 2-8xe ^ (3x) [1 + 6x] Menemukan f (-2) f (x) = 14x ^ 3-4x ^ 2e ^ (3x) f (-2) = 14 * (- 2) ^ 3-4 * (- 2)