Buat tabel kebenaran proposisi ¬q [(pΛq) V ~ p]?

Buat tabel kebenaran proposisi ¬q [(pΛq) V ~ p]?
Anonim

Menjawab:

Lihat di bawah.

Penjelasan:

Diberikan: #not p -> (p ^^ q) vv ~ p #

Operator logika:# "not p:" not p, ~ p; "dan:" ^^; atau: vv #

Tabel Logika, negasi:

#ul (| "" p | "" q | "" ~ p | "" ~ q |) #

# "" T | "" T | "" F | "" F | #

# "" T | "" F | "" F | "" T | #

# "" F | "" T | "" T | "" F | #

# "" F | "" F | "" T | "" T | #

Tabel Logika, dan & atau:

#ul (| "" p | "" q | "" p ^^ q "" | "" qvvq "" |) #

# | "" T | "" T | "" T "" | "" T "" | #

# | "" T | "" F | "" F "" | "" T "" | #

# | "" F | "" T | "" F "" | "" T "" | #

# | "" F | "" F | "" F "" | "" F "" | #

Tabel Logika, jika kemudian:

#ul (| "" p | "" q | "" p-> q "" |) #

# | "" T | "" T | "" T "" | #

# | "" T | "" F | "" F "" | #

# | "" F | "" T | "" T "" | #

# | "" F | "" F | "" T "" | #

Proposisi Logika yang diberikan bagian 1:

#ul (| "" p ^^ q "" | "" ~ p "" | "" (p ^^ q) vv ~ p |) #

# | "" T "" | "" F "" | "" T "" | #

# | "" F "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" F "" | "" T "" | "" T "" | #

Proposisi Logika yang diberikan bagian 2:

#ul (| "" ~ q "" | "" (p ^^ q) vv ~ p | "" ~ q -> (p ^^ q) vv ~ p |) #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "T" "|" "T" "| #