Menjawab:
Penjelasan:
Untuk menulis ulang persamaan dalam bentuk standar, mulailah dengan memperluas dua tanda kurung pertama:
# y = (warna (merah) x # #warna (hijau) (- 6)) (warna (oranye) x # #warna (biru) (- 4)) (x-1) #
# y = (warna (merah) x (warna (oranye) x) # #warna (merah) (+ x) (warna (biru) (- 4)) # #warna (oranye) (+ x) (warna (hijau) (- 6)) # #warna (hijau) (- 6) (warna (biru) (- 4))) (x-1) #
Menyederhanakan.
# y = (x ^ 2-4x-6x + 24) (x-1) #
# y = (x ^ 2-10x + 24) (x-1) #
Luaskan dua kurung yang tersisa:
# y = (warna (merah) (x ^ 2) # #warna (oranye) (- 10x) # #warna (biru) (+ 24)) (warna (hijau) x # #warna (ungu) (- 1)) #
# y = warna (merah) (x ^ 2) (warna (hijau) x) # #warna (merah) (+ x ^ 2) (warna (ungu) (- 1)) # #warna (oranye) (- 10x) (warna (hijau) x) # #warna (oranye) (- 10x) (warna (ungu) (- 1)) # #warna (biru) (+ 24) (warna (hijau) x) # #warna (biru) (+ 24) (warna (ungu) (- 1)) #
Menyederhanakan.
# y = x ^ 3-x ^ 2-10x ^ 2 + 10x + 24x-24 #
# y = x ^ 3-11x ^ 2 + 34x-24 #
Bentuk titik-kemiringan dari persamaan garis yang melewati (-5, -1) dan (10, -7) adalah y + 7 = -2 / 5 (x-10). Apa bentuk standar dari persamaan untuk baris ini?
2 / 5x + y = -3 Format bentuk standar untuk persamaan garis adalah Ax + By = C. Persamaan yang kita miliki, y + 7 = -2/5 (x-10) saat ini dalam point- bentuk kemiringan. Hal pertama yang harus dilakukan adalah mendistribusikan -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Sekarang mari kita kurangi 4 dari kedua sisi persamaan: y + 3 = -2 / 5x Karena persamaannya harus Ax + By = C, mari kita pindahkan 3 ke sisi lain dari persamaan dan -2 / 5x ke sisi lain dari persamaan: 2 / 5x + y = -3 Persamaan ini sekarang dalam bentuk standar.
Bentuk standar dari persamaan parabola adalah y = 2x ^ 2 + 16x + 17. Apa bentuk verteks dari persamaan?
Bentuk simpul umum adalah y = a (x-h) ^ 2 + k. Silakan lihat penjelasan untuk formulir simpul khusus. "A" dalam bentuk umum adalah koefisien dari istilah kuadrat dalam bentuk standar: a = 2 Koordinat x dalam vertex, h, ditemukan menggunakan rumus: h = -b / (2a) h = - 16 / (2 (2) h = -4 Koordinat y dari vertex, k, ditemukan dengan mengevaluasi fungsi yang diberikan pada x = h: k = 2 (-4) ^ 2 + 16 (-4) +17 k = -15 Mengganti nilai-nilai ke dalam bentuk umum: y = 2 (x - 4) ^ 2-15 larr bentuk verteks spesifik
Bentuk verteks dari persamaan parabola adalah x = (y - 3) ^ 2 + 41, apa bentuk standar dari persamaan?
Y = + - sqrt (x-41) +3 Kita harus menyelesaikannya untuk y. Setelah kita selesai melakukannya, kita dapat memanipulasi sisa masalah (jika perlu) untuk mengubahnya ke bentuk standar: x = (y-3) ^ 2 + 41 kurangi 41 di kedua sisi x-41 = (y -3) ^ 2 mengambil akar kuadrat dari kedua sisi warna (merah) (+ -) sqrt (x-41) = y-3 tambahkan 3 ke kedua sisi y = + - sqrt (x-41) +3 atau y = 3 + -sqrt (x-41) Bentuk standar dari fungsi Root Square adalah y = + - sqrt (x) + h, jadi jawaban akhir kita harus y = + - sqrt (x-41) +3