Mengingat bahwa y bervariasi bersama sebagai kubus x dan akar kuadrat dari w,
Sekali lagi memasukkan
y = 128 ketika x = 2 dan w = 16 dalam persamaan (1)
Sekarang persamaan (1) menjadi
Memasukkan x = 1/2 dan w = 64 kita dapatkan
'L bervariasi bersama sebagai a dan kuadrat akar dari b, dan L = 72 ketika a = 8 dan b = 9. Temukan L ketika a = 1/2 dan b = 36? Y bervariasi bersama sebagai kubus x dan akar kuadrat dari w, dan Y = 128 ketika x = 2 dan w = 16. Cari Y ketika x = 1/2 dan w = 64?
L = 9 "dan" y = 4> "pernyataan awal adalah" Lpropasqrtb "untuk mengkonversi ke persamaan, kalikan dengan k" "variasi" rArrL = kasqrtb "untuk menemukan k gunakan kondisi yang diberikan" L = 72 "ketika "a = 8" dan "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" persamaan adalah "warna (merah) (bar (ul (| warna (putih) ( 2/2) warna (hitam) (L = 3asqrtb) warna (putih) (2/2) |))) "ketika" a = 1/2 "dan" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 warna (biru) "---------------------------------
Apa akar kuadrat dari 3 + akar kuadrat dari 72 - akar kuadrat dari 128 + akar kuadrat dari 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Kita tahu bahwa 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, jadi sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Kita tahu bahwa 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, jadi sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Kita tahu bahwa 128 = 2 ^ 7 , jadi sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Menyederhanakan 7sqrt (3) - 2sqrt (2)
Berapakah akar kuadrat dari 7 + akar kuadrat dari 7 ^ 2 + akar kuadrat dari 7 ^ 3 + akar kuadrat dari 7 ^ 4 + akar kuadrat dari 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Hal pertama yang dapat kita lakukan adalah membatalkan root pada yang memiliki kekuatan genap. Karena: sqrt (x ^ 2) = x dan sqrt (x ^ 4) = x ^ 2 untuk semua nomor, kita dapat mengatakan bahwa sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sekarang, 7 ^ 3 dapat ditulis ulang sebagai 7 ^ 2 * 7, dan 7 ^ 2 itu bisa keluar dari root! Hal yang sama berlaku untuk 7 ^ 5 tetapi ditulis ulang sebagai 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 +