Menjawab:
Mungkin ada
Penjelasan:
Kasus
Jika
Kasus
Jika
Kasus
Jika
Kasus
Jika
Kasus
Jika
Diskriminan persamaan kuadrat adalah -5. Jawaban mana yang menjelaskan jumlah dan jenis solusi persamaan: 1 solusi kompleks 2 solusi nyata 2 solusi kompleks 1 solusi nyata?
Persamaan kuadrat Anda memiliki 2 solusi kompleks. Diskriminan persamaan kuadrat hanya dapat memberi kita informasi tentang persamaan bentuk: y = ax ^ 2 + bx + c atau parabola. Karena derajat tertinggi dari polinomial ini adalah 2, ia harus memiliki tidak lebih dari 2 solusi. Diskriminan hanyalah barang-barang di bawah simbol akar kuadrat (+ -sqrt ("")), tetapi bukan simbol akar kuadrat itu sendiri. + -sqrt (b ^ 2-4ac) Jika diskriminan, b ^ 2-4ac, kurang dari nol (yaitu, angka negatif), maka Anda akan memiliki negatif di bawah simbol akar kuadrat. Nilai negatif di bawah akar kuadrat adalah solusi yang kompleks. S
Apakah [5 (akar kuadrat dari 5) + 3 (akar kuadrat dari 7)] / [4 (akar kuadrat dari 7) - 3 (akar kuadrat dari 5)]?
(159 + 29sqrt (35)) / 47 warna (putih) ("XXXXXXXX") dengan asumsi saya tidak membuat kesalahan aritmatika (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Rasionalisasi penyebut dengan mengalikan dengan konjugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Berapakah akar kuadrat dari 7 + akar kuadrat dari 7 ^ 2 + akar kuadrat dari 7 ^ 3 + akar kuadrat dari 7 ^ 4 + akar kuadrat dari 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Hal pertama yang dapat kita lakukan adalah membatalkan root pada yang memiliki kekuatan genap. Karena: sqrt (x ^ 2) = x dan sqrt (x ^ 4) = x ^ 2 untuk semua nomor, kita dapat mengatakan bahwa sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sekarang, 7 ^ 3 dapat ditulis ulang sebagai 7 ^ 2 * 7, dan 7 ^ 2 itu bisa keluar dari root! Hal yang sama berlaku untuk 7 ^ 5 tetapi ditulis ulang sebagai 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 +