Menjawab:
Tidak begitu yakin tentang ini tapi mungkin 75cm?
Penjelasan:
Karena
Menjawab:
Penjelasan:
Dalam rt
Sekarang di rt
Fungsi f sedemikian rupa sehingga f (x) = a ^ 2x ^ 2-ax + 3b untuk x <1 / (2a) Dimana a dan b adalah konstan untuk kasus di mana a = 1 dan b = -1 Temukan f ^ - 1 (cf dan temukan domainnya saya tahu domain f ^ -1 (x) = rentang f (x) dan -13/4 tapi saya tidak tahu arah tanda ketidaksetaraan?
Lihat di bawah. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Kisaran: Dimasukkan ke dalam bentuk y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Nilai minimum -13/4 Ini terjadi pada x = 1/2 Jadi rentangnya adalah (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Menggunakan rumus kuadratik: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Dengan sedikit pemikiran kita dapat melihat bahwa untuk domain kita memiliki invers yang diperlukan adalah : f ^ (- 1) (x) = (1-sqr
Biarkan veca = <- 2,3> dan vecb = <- 5, k>. Temukan k sehingga veca dan vecb akan menjadi orthogonal. Temukan k sehingga a dan b akan ortogonal?
Vec {a} quad "dan" quad vec {b} quad "akan menjadi tepat orthogonal ketika:" qquad qquad qquad qquad qquad qquad qquad qquad qquad qquad qquad quad k = -10 / 3. # "Ingat itu, untuk dua vektor:" qquad vec {a}, vec {b} qquad "kami memiliki:" qquad vec {a} quad "dan" quad vec {b} qquad quad " bersifat ortogonal " qquad qquad hArr qquad qquad vec {a} cdot vec {b} = 0." Dengan demikian: " qquad <-2, 3> quad" dan " quad <-5, k> qquad quad "adalah orthogonal" qquad qquad hArr qquad qquad <-2, 3> cdot <-5, k> = 0 qquad