Menjawab:
Penjelasan:
Diberikan poin
Kemiringan di antara kedua titik ini adalah
Kita dapat menulis persamaan garis melalui dua poin ini sebagai:
menggunakan kemiringan dari atas dan salah satu poin yang diberikan.
Sebagai contoh:
Ini dapat dikonversi menjadi bentuk standar:
Persamaan garis adalah 2x + 3y - 7 = 0, cari: - (1) kemiringan garis (2) persamaan garis tegak lurus dengan garis yang diberikan dan melewati persimpangan garis x-y + 2 = 0 dan 3x + y-10 = 0?
-3x + 2y-2 = 0 warna (putih) ("ddd") -> warna (putih) ("ddd") y = 3 / 2x + 1 Bagian pertama dalam banyak detail menunjukkan bagaimana prinsip pertama bekerja. Setelah terbiasa dengan ini dan menggunakan cara pintas Anda akan menggunakan lebih sedikit garis. warna (biru) ("Tentukan intersep dari persamaan awal") x-y + 2 = 0 "" ....... Persamaan (1) 3x + y-10 = 0 "" .... Persamaan ( 2) Kurangi x dari kedua sisi Persamaan (1) beri -y + 2 = -x Kalikan kedua sisi dengan (-1) + y-2 = + x "" .......... Persamaan (1_a ) Menggunakan Eqn (1_a) menggantikan x dalam Eqn (2
Buktikan bahwa diberi garis dan titik tidak pada garis itu, ada tepat satu garis yang melewati titik itu tegak lurus melalui garis itu? Anda dapat melakukan ini secara matematis atau melalui konstruksi (Yunani kuno melakukannya)?
Lihat di bawah. Mari Asumsikan Garis Diberikan adalah AB, dan intinya adalah P, yang bukan pada AB. Sekarang, Mari kita asumsikan, Kami telah menggambar PO tegak lurus pada AB. Kita harus membuktikan bahwa, PO ini adalah satu-satunya garis yang melewati P yang tegak lurus terhadap AB. Sekarang, kita akan menggunakan konstruksi. Mari kita bangun PC tegak lurus lain pada AB dari titik P. Now The Proof. Kami punya, OP tegak lurus AB [saya tidak bisa menggunakan tanda tegak lurus, bagaimana lagi] Dan, Juga, PC tegak lurus AB. Jadi, OP || PC. [Keduanya tegak lurus pada baris yang sama.] Sekarang OP dan PC keduanya memiliki titi
Tunjukkan bahwa untuk semua nilai m garis lurus x (2m-3) + y (3-m) + 1-2m = 0 lulus melalui titik perpotongan dari dua garis tetap. Untuk nilai m apa garis garis dibagi sudut antara dua garis tetap?
M = 2 dan m = 0 Memecahkan sistem persamaan x (2 m - 3) + y (3 - m) + 1 - 2 m = 0 x (2 n - 3) + y (3 - n) + 1 - 2 n = 0 untuk x, y kita mendapatkan x = 5/3, y = 4/3 Pembagian diperoleh dengan membuat (kemiringan lurus) (2m-3) / (3-m) = 1-> m = 2 dan ( 2m-3) / (3-m) = -1-> m = 0