Berapakah vektor satuan yang normal pada bidang yang berisi (- 3 i + j -k) dan # (- 4i + 5 j - 3k)?

Berapakah vektor satuan yang normal pada bidang yang berisi (- 3 i + j -k) dan # (- 4i + 5 j - 3k)?
Anonim

Menjawab:

Vektor satuan adalah # = 〈2 / sqrt150, -5 / sqrt150, -11 / sqrt150〉 #

Penjelasan:

Vektor tegak lurus terhadap 2 vektor dihitung dengan determinan (produk silang)

# | (veci, vecj, veck), (d, e, f), (g, h, i) | #

dimana # 〈D, e, f〉 # dan # 〈G, h, i〉 # adalah 2 vektor

Di sini, kita punya #veca = 〈- 3,1, -1〉 # dan #vecb = 〈- 4,5, -3〉 #

Karena itu, # | (veci, vecj, veck), (-3,1, -1), (-4,5, -3) | #

# = veci | (1, -1), (5, -3) | -vecj | (-3, -1), (-4, -3) | + lihat | (-3,1), (-4,5) | #

# = veci (1 * -3 + 1 * 5) -vecj (-3 * -3-1 * 4) + veck (-3 * 5 + 1 * 4) #

# = 〈2, -5, -11〉 = vecc #

Verifikasi dengan melakukan produk 2 titik

#〈2,-5,-11〉.〈-3,1,-1〉=-6-5+11=0#

#〈2,-5,-11〉.〈-4,5,-3〉=-8-25+33=0#

Begitu, # vecc # tegak lurus terhadap # veca # dan # vecb #

Vektor satuan adalah

# = vecc / (|| vecc ||) #

# = 1 / sqrt (4 + 25 + 121) 〈2, -5, -11〉 #

# = 1 / sqrt150 〈2, -5, -11〉 #