Menjawab:
Vektor satuan adalah
Penjelasan:
Anda harus melakukan produk silang dari dua vektor untuk mendapatkan vektor tegak lurus terhadap bidang:
Produk silang adalah penentu
Kami memeriksa dengan melakukan produk titik.
Seperti produk titik-titiknya
Vektor satuan adalah
Berapakah vektor satuan yang normal pada bidang yang berisi (2i - 3 j + k) dan (2i + j - 3k)?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> Vektor yang normal (ortogonal, tegak lurus) ke pesawat yang berisi dua vektor juga normal untuk kedua vektor yang diberikan. Kita dapat menemukan vektor normal dengan mengambil produk silang dari dua vektor yang diberikan. Kita kemudian dapat menemukan vektor satuan dalam arah yang sama dengan vektor itu. Pertama, tulis setiap vektor dalam bentuk vektor: veca = <2, -3,1> vecb = <2,1, -3> Produk silang, vecaxxvecb ditemukan oleh: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) Untuk komponen i, kami memiliki: (-3 * -3) - (1 * 1) = 9- (1) =
Berapakah vektor satuan yang normal pada bidang yang berisi (- 3 i + j -k) dan # (- 2i - j - k)?
Vektor satuan adalah = <- 2 / sqrt30, -1 / sqrt30,5 / sqrt30> Kami menghitung vektor yang tegak lurus terhadap 2 vektor lainnya dengan melakukan produk silang, Misalkan veca = <- 3,1, -1> vecb = <- 2, -1, -1> vecc = | (hati, hatj, hatk), (- 3,1, -1), (- 2, -1, -1) | = hati | (1, -1), (- 1, -1) | -hatj | (-3, -1), (- 2, -1) | + hatk | (-3,1), (- 2 , -1) | = hati (-2) -hatj (1) + hatk (5) = <- 2, -1,5> Verifikasi veca.vecc = <- 3,1, -1>. <- 2, -1,5> = 6-1-5 = 0 vecb.vecc = <- 2, -1, -1>. <- 2, -1,5> = 4 + 1-5 = 0 Modulus vecc = || vecc || = || <-2, -1,5> || = sqrt (4 + 1
Berapakah vektor satuan yang normal pada bidang yang berisi (- 3 i + j -k) dan (2i - 3 j + k)?
= (-2 hat i + hat j + 7 hat k) / (3 sqrt (6)) Anda akan melakukan ini dengan menghitung produk vektor silang dari 2 vektor ini untuk mendapatkan vektor normal sehingga vec n = (- 3 i + j-k) kali (2i - 3 j + k) = det [(hat i, hat j, hat k), (-3,1, -1), (2, -3,1)] = hat i (1 * 1 - (-3 * -1)) - topi j (-3 * 1 - (-1 * 2)) + topi k (-3 * -3 - 2 * 1)) = -2 topi i + hat j + 7 hat k unit normal adalah hat n = (-2 hat i + hat j + 7 hat k) / (sqrt ((- 2) ^ 2 + 1 ^ 2 + 7 ^ 2)) = (-2 hat i + hat j + 7 hat k) / (3 sqrt (6)) Anda dapat memeriksa ini dengan melakukan produk skalar dot antara normal dan masing-masing vektor asli, harus me