Menjawab:
Penjelasan:
Vektor yang normal (ortogonal, tegak lurus) ke bidang yang mengandung dua vektor juga normal untuk kedua vektor yang diberikan. Kita dapat menemukan vektor normal dengan mengambil produk silang dari dua vektor yang diberikan. Kita kemudian dapat menemukan vektor satuan dalam arah yang sama dengan vektor itu.
Pertama, tulis setiap vektor dalam bentuk vektor:
# veca = <2, -3,1> #
# vecb = <2,1, -3> #
Produk silang,
# vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) #
Untuk saya komponen, kami memiliki:
#(-3*-3)-(1*1)=9-(1)=8#
Untuk j komponen, kami memiliki:
#-(2*-3)-(2*1)=--6-2=8#
Untuk k komponen, kami memiliki:
#(2*1)-(-3*2)=2-(-6)=8#
Karena itu,
Sekarang, untuk menjadikan ini sebuah vektor satuan, kita membagi vektor dengan besarnya. Besarnya diberikan oleh:
# | vecn | = sqrt ((n_x) ^ 2 + (n_y) ^ 2 + (n_z) ^ 2) #
# | vecn | = sqrt ((8) ^ 2 + (8) ^ 2 + (8) ^ 2) #
# | vecn | = sqrt (64 + 64 + 64) = sqrt (192) = 8sqrt3 #
Vektor satuan kemudian diberikan oleh:
# vecu = (vecaxxvecb) / (| vecaxxvecb |) = (vecn) / (| vecn |) #
#vecu = (<8,8,8>) / (8sqrt (3)) #
# vecu = <1 / (sqrt (3)), 1 / (sqrt (3)), 1 / (sqrt (3))> #
Dengan merasionalisasi penyebut, kita mendapatkan:
Berapakah vektor satuan yang normal pada bidang yang berisi <1,1,1> dan <2,0, -1>?
Vektor satuan adalah = 1 / sqrt14 〈-1,3, -2〉 Anda harus melakukan produk silang dari dua vektor untuk mendapatkan vektor yang tegak lurus terhadap bidang: Produk silang adalah penentu ((veci, vecj, veck), (1,1,1), (2,0, -1)) = veci (-1) -vecj (-1-2) + veck (-2) = 〈- 1,3, -2 〉 Kami memeriksa dengan melakukan produk titik. 〈-1,3, -2〉. 〈1,1,1〉 = - 1 + 3-2 = 0 〈-1,3, -2〉. 〈2,0, -1〉 = - 2 + 0 + 2 = 0 Karena titik-titik produknya adalah 0, kami menyimpulkan bahwa vektor tegak lurus terhadap bidang. vecv = sqrt (1 + 9 + 4) = sqrt14 Vektor satuan adalah hatv = vecv / ( vecv ) = 1 / sqrt14 〈-1,3, -2〉
Berapakah vektor satuan yang normal pada bidang yang berisi (- 3 i + j -k) dan # (- 2i - j - k)?
Vektor satuan adalah = <- 2 / sqrt30, -1 / sqrt30,5 / sqrt30> Kami menghitung vektor yang tegak lurus terhadap 2 vektor lainnya dengan melakukan produk silang, Misalkan veca = <- 3,1, -1> vecb = <- 2, -1, -1> vecc = | (hati, hatj, hatk), (- 3,1, -1), (- 2, -1, -1) | = hati | (1, -1), (- 1, -1) | -hatj | (-3, -1), (- 2, -1) | + hatk | (-3,1), (- 2 , -1) | = hati (-2) -hatj (1) + hatk (5) = <- 2, -1,5> Verifikasi veca.vecc = <- 3,1, -1>. <- 2, -1,5> = 6-1-5 = 0 vecb.vecc = <- 2, -1, -1>. <- 2, -1,5> = 4 + 1-5 = 0 Modulus vecc = || vecc || = || <-2, -1,5> || = sqrt (4 + 1
Berapakah vektor satuan yang normal pada bidang yang berisi (- 3 i + j -k) dan (2i - 3 j + k)?
= (-2 hat i + hat j + 7 hat k) / (3 sqrt (6)) Anda akan melakukan ini dengan menghitung produk vektor silang dari 2 vektor ini untuk mendapatkan vektor normal sehingga vec n = (- 3 i + j-k) kali (2i - 3 j + k) = det [(hat i, hat j, hat k), (-3,1, -1), (2, -3,1)] = hat i (1 * 1 - (-3 * -1)) - topi j (-3 * 1 - (-1 * 2)) + topi k (-3 * -3 - 2 * 1)) = -2 topi i + hat j + 7 hat k unit normal adalah hat n = (-2 hat i + hat j + 7 hat k) / (sqrt ((- 2) ^ 2 + 1 ^ 2 + 7 ^ 2)) = (-2 hat i + hat j + 7 hat k) / (3 sqrt (6)) Anda dapat memeriksa ini dengan melakukan produk skalar dot antara normal dan masing-masing vektor asli, harus me