Menjawab:
Domain
Jarak
Penjelasan:
Untuk bagian domain, jelas bagian di dalam akar kuadrat harus positif atau nol
Jadi domain
Jelas sebagai nilai x mendekati - bahwa y juga mendekati -
Dan jika x = 1, y = 0
Karena itu domain
Jarak
Semoga ini bisa membantu !!
Bagaimana Anda menemukan domain dan rentang relasi, dan menyatakan apakah relasinya adalah fungsi (0,1), (3,2), (5,3), (3,4)?
Domain: 0, 3, 5 Rentang: 1, 2, 3, 4 Bukan fungsi Ketika Anda diberi serangkaian poin, domain sama dengan set semua nilai-x yang Anda berikan dan rentangnya adalah sama dengan himpunan semua nilai-y. Definisi fungsi adalah bahwa untuk setiap input tidak ada lebih dari satu output. Dengan kata lain, jika Anda memilih nilai untuk x Anda seharusnya tidak mendapatkan 2 nilai-y. Dalam kasus ini, relasinya bukan suatu fungsi karena input 3 memberikan output 4 dan output 2.
Apa domain dan rentang 3x-2 / 5x + 1 dan domain serta rentang invers dari fungsi?
Domain adalah semua real kecuali -1/5 yang merupakan rentang kebalikannya. Rentang adalah semua real kecuali 3/5 yang merupakan domain dari invers. f (x) = (3x-2) / (5x + 1) didefinisikan dan nilai riil untuk semua x kecuali -1/5, sehingga itu adalah domain f dan rentang f ^ -1 Pengaturan y = (3x -2) / (5x + 1) dan penyelesaian untuk x menghasilkan 5xy + y = 3x-2, jadi 5xy-3x = -y-2, dan karena itu (5y-3) x = -y-2, jadi, akhirnya x = (- y-2) / (5y-3). Kami melihat bahwa y! = 3/5. Jadi kisaran f adalah semua real kecuali 3/5. Ini juga domain dari f ^ -1.
Jika f (x) = 3x ^ 2 dan g (x) = (x-9) / (x + 1), dan x! = - 1, lalu apa yang akan f (g (x)) sama? g (f (x))? f ^ -1 (x)? Apa yang akan menjadi domain, rentang, dan nol untuk f (x)? Apa yang akan menjadi domain, rentang, dan nol untuk g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x dalam RR}, R_f = {f (x) dalam RR; f (x)> = 0} D_g = {x dalam RR; x! = - 1}, R_g = {g (x) dalam RR; g (x)! = 1}