
Menjawab:
Penjelasan:
Panjang setiap sisi segitiga sama sisi bertambah 5 inci, jadi, perimeter sekarang 60 inci. Bagaimana Anda menulis dan memecahkan persamaan untuk menemukan panjang asli setiap sisi dari segitiga sama sisi?

Saya menemukan: 15 "dalam" Marilah kita memanggil panjang aslinya x: Peningkatan 5 "dalam" akan memberi kita: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 penataan ulang: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
Batas segitiga adalah 24 inci. Sisi terpanjang 4 inci lebih panjang dari sisi terpendek, dan sisi terpendek adalah tiga perempat panjang sisi tengah. Bagaimana Anda menemukan panjang setiap sisi segitiga?

Yah masalah ini tidak mungkin. Jika sisi terpanjang adalah 4 inci, tidak mungkin perimeter segitiga bisa 24 inci. Anda mengatakan bahwa 4 + (sesuatu yang kurang dari 4) + (sesuatu yang kurang dari 4) = 24, yang tidak mungkin.
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 5 dan 7. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 19. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?

Area Maksimum = 187.947 "" unit kuadrat Area Minimum = 88.4082 "" unit kuadrat Segitiga A dan B serupa. Dengan metode perbandingan dan proporsi solusi, segitiga B memiliki tiga kemungkinan segitiga. Untuk Segitiga A: sisinya x = 7, y = 5, z = 4.800941906394, Sudut Z = 43.29180759327 ^ @ Sudut Z antara sisi x dan y diperoleh dengan menggunakan rumus untuk luas segitiga Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tiga kemungkinan segitiga untuk Segitiga B: sisi adalah Segitiga 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, Angle Z_1 = 43.29180759327 ^ @ Segitiga 2. x_2 = 133