Buktikan: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?

Buktikan: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Anonim

Menjawab:

Bukti di bawah ini

menggunakan konjugat dan versi trigonometri dari Teorema Pythagoras.

Penjelasan:

Bagian 1

#sqrt ((1-cosx) / (1 + cosx)) #

#color (white) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) #

#color (white) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) #

#color (white) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) #

Bagian 2

Demikian pula

#sqrt ((1 + cosx) / (1-cosx) #

#color (white) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) #

Bagian 3: Menggabungkan istilah

#sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) #

#color (white) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x) #

#color (white) ("XXX") = 2 / sqrt (1-cos ^ 2x) #

#color (white) ("XXXXXX") #dan sejak itu # sin ^ 2x + cos ^ 2x = 1 # (berdasarkan Teorema Pythagoras)

#color (white) ("XXXXXXXXX") sin ^ 2x = 1-cos ^ 2x #

#color (white) ("XXXXXXXXX") sqrt (1-cos ^ 2x) = abs (sinx) #

#sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / sqrt (1-cos ^ 2x) = 2 / abs (sinx) #