Menjawab:
Lihat penjelasannya
Penjelasan:
Itu semua tergantung pada nilai n. Jika Anda mereferensikan segitiga Pascal, Anda dapat mengamati seberapa banyak perubahan ini>
Misalkan n = 6 maka Anda akan melihat garis
Tapi pertama-tama mari kita membangun semua indeks (kekuatan)
Ngomong-ngomong;
Sekarang kita tambahkan koefisien dari baris 6
Jika saya ingat dengan benar; Secara umum kami memiliki:
Mari kita uji
Istilah keempat dari suatu AP sama dengan tiga kali istilah ketujuh melebihi dua kali istilah ketiga dengan 1. Cari istilah pertama dan perbedaan umum?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Mengganti nilai dalam (1) persamaan, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Mengganti nilai dalam persamaan (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Pada penyelesaian persamaan (3) dan (4) secara bersamaan kita dapatkan, d = 2/13 a = -15/13
Ketika polinomial memiliki empat istilah dan Anda tidak dapat memfaktorkan sesuatu dari semua istilah, atur ulang polinomial sehingga Anda dapat memfaktorkan dua istilah sekaligus. Kemudian tuliskan dua binomial yang akhirnya Anda miliki. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "langkah pertama adalah menghapus tanda kurung" rArr (4ab + 8b) (merah) (- 1) (3a + 6) = 4ab + 8b-3a-6 "sekarang memfaktorkan istilah dengan 'mengelompokkan' mereka "warna (merah) (4b) (a + 2) warna (merah) (- 3) (a + 2)" mengambil "(a + 2)" sebagai faktor umum dari masing-masing kelompok "= (a + 2) (warna (merah) (4b-3)) rR (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) warna (biru)" Sebagai tanda centang " (a + 2) (4b-3) larr "ekspansi menggunakan FOIL" = 4ab-3a + 8b-6larr "dibandingkan dengan ekspansi di atas"
Ketika polinomial memiliki empat istilah dan Anda tidak dapat memfaktorkan sesuatu dari semua istilah, atur ulang polinomial sehingga Anda dapat memfaktorkan dua istilah sekaligus. Kemudian tulis dua binomial yang Anda miliki. (6y ^ 2-4y) + (3y-2)?
(3y-2) (2y + 1) Mari kita mulai dengan ekspresi: (6y ^ 2-4y) + (3y-2) Perhatikan bahwa saya dapat memperhitungkan 2y dari istilah kiri dan itu akan meninggalkan 3y-2 di dalam bracket: 2y (3y-2) + (3y-2) Ingatlah bahwa saya dapat mengalikan apa pun dengan 1 dan mendapatkan hal yang sama. Jadi saya dapat mengatakan bahwa ada 1 di depan istilah yang tepat: 2y (3y-2) +1 (3y-2) Apa yang sekarang dapat saya lakukan adalah faktor 3y-2 dari istilah kanan dan kiri: (3y -2) (2th + 1) Dan sekarang ungkapan itu diperhitungkan!