Menjawab:
Penjelasan:
Untuk dosa kt dan cos kt, periode adalah
Di sini, periode yang terpisah dari persyaratan
Karena 48 adalah kelipatan bilangan bulat dari 4, LCM adalah 48 dan ini adalah periode untuk jumlah yang memberikan osilasi majemuk dari dua osilasi terpisah
Tunjukkan bahwa cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Saya agak bingung jika saya membuat Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), itu akan berubah menjadi negatif karena cos (180 °-theta) = - costheta in kuadran kedua. Bagaimana cara saya membuktikan pertanyaan itu?
Silahkan lihat di bawah ini. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Apa periode dan periode dasar y (x) = sin (2x) + cos (4x)?
Y (x) adalah jumlah dari dua fungsi trignometrik. Periode sin 2x adalah (2pi) / 2 yaitu pi atau 180 derajat. Periode cos4x adalah (2pi) / 4 yaitu pi / 2, atau 90 derajat. Temukan LCM 180 dan 90. Itu akan menjadi 180. Karenanya periode fungsi yang diberikan akan pi
Berapa periode f (t) = sin ((3t) / 2) + cos ((2t) / 9)?
36pi Periode dosa ((3t) / 2) -> (4pi) / 3 Periode cos ((2t) / 9) -> (18pi) / 2 = 9pi (4pi) / 3 ..x ... (27) -> 36 pi 9pi ... x ... (4) -> 36 pi Periode f (t) -> 36pi, kelipatan paling umum (4pi) / 3 dan 9pi.