Menjawab:
Atau
Penjelasan:
Pertama, kita perlu mengubah garis menjadi bentuk mencegat-lereng untuk menemukan lereng.
Bentuk slope-intercept dari persamaan linear adalah:
Dimana
Kita dapat memecahkan persamaan dalam masalah untuk
Jadi untuk persamaan ini adalah slope
Garis yang tegak lurus dengan garis ini akan memiliki kemiringan yang merupakan kebalikan negatif dari garis kami atau
Kita sekarang dapat menggunakan rumus titik-kemiringan untuk menulis persamaan untuk garis tegak lurus:
Rumus titik-kemiringan menyatakan:
Dimana
Mengganti titik dari masalah dan kemiringan yang kami hitung memberikan:
Atau, kita bisa meletakkan persamaan dalam bentuk intersep-lereng yang lebih akrab dengan memecahkannya
Apa persamaan garis yang melewati titik asal dan tegak lurus terhadap garis yang melewati titik-titik berikut: (3,7), (5,8)?
Y = -2x Pertama-tama, kita perlu menemukan gradien dari garis yang melewati (3,7) dan (5,8) "gradient" = (8-7) / (5-3) "gradient" = 1 / 2 Sekarang karena baris baru PERPENDICULAR ke garis yang melewati 2 titik, kita dapat menggunakan persamaan ini m_1m_2 = -1 di mana gradien dari dua baris yang berbeda ketika dikalikan harus sama dengan -1 jika garis-garis tersebut saling tegak lurus satu sama lain yaitu di sudut kanan. karenanya, baris baru Anda akan memiliki gradien 1 / 2m_2 = -1 m_2 = -2 Sekarang, kita dapat menggunakan rumus titik gradien untuk menemukan persamaan Anda dari garis y-0 = -2 (x-0) y =
Apa persamaan garis yang melewati titik asal dan tegak lurus terhadap garis yang melewati titik-titik berikut: (9,4), (3,8)?
Lihat di bawah Kemiringan garis yang melewati (9,4) dan (3,8) = (4-8) / (9-3) -2/3 sehingga setiap garis tegak lurus terhadap garis yang melewati (9,4) ) dan (3,8) akan memiliki kemiringan (m) = 3/2 Oleh karena itu kita harus mengetahui persamaan garis yang melewati (0,0) dan memiliki kemiringan = 3/2 persamaan yang diperlukan adalah (y-0 ) = 3/2 (x-0) ie2y-3x = 0
Apa persamaan garis yang melewati titik asal dan tegak lurus terhadap garis yang melewati titik-titik berikut: (9,2), (- 2,8)?
6y = 11x Garis melalui (9,2) dan (-2,8) memiliki kemiringan warna (putih) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Semua garis tegak lurus dengan ini akan memiliki kemiringan warna (putih) ("XXX") m_2 = -1 / m_1 = 11/6 Menggunakan bentuk titik-lereng, garis melalui titik asal dengan kemiringan tegak lurus ini akan memiliki persamaan: warna (putih) ("XXX") (y-0) / (x-0) = 11/6 atau warna (putih) ("XXX") 6y = 11x