Berapa frekuensi f (theta) = sin 2 t - cos 5 t?

Berapa frekuensi f (theta) = sin 2 t - cos 5 t?
Anonim

Menjawab:

# 2pi #

Penjelasan:

Periode dosa 2t -> # (2pi) / 2 = pi #

Periode cos 5t -># (2pi) / 5 #

Periode f (t) -> kelipatan paling tidak umum dari #pi dan (2pi) /5.#

pi …………. x 2 … -> 2pi

(2pi) / 5 …. x 5 ……--> 2pi

Periode f (t) adalah # (2pi) #

Menjawab:

Frekuensinya adalah # = 1 / (2pi) #

Penjelasan:

Frekuensinya adalah # f = 1 / T #

Periode tersebut adalah # = T #

Sebuah fungsi #f (theta) # adalah T-periodic iif

#f (theta) = (theta + T) #

Karena itu, #sin (2t) -cos (5t) = sin2 (t + T) -cos5 (t + T) #

Karena itu, # {(sin (2t) = sin2 (t + T)), (cos (5t) = cos5 (t + T)):} #

#<=>#, # {(sin2t = sin (2t + 2T)), (cos5t = cos (5t + 5T)):} #

#<=>#, # {(sin2t = sin2tcos2T + cos2tsin2T), (cos5t = cos5tcos5T-sin5tsin5T):} #

#<=>#, # {(cos2T = 1), (cos5T = 1):} #

#<=>#, # {(2T = 2pi = 4pi), (5T = 2pi = 4pi = 6pi = 8pi = 10pi):} #

#<=>#, # {(T = 4 / 2pi = 2pi), (T = 10 / 5pi = 2pi):} #

Periode tersebut adalah # = 2pi #

Frekuensinya adalah

# f = 1 / (2pi) #

graph {sin (2x) -cos (5x) -3.75, 18.75, -7.045, 4.205}