Misalkan x, y, z adalah tiga bilangan real dan berbeda yang memenuhi Persamaan 8 (4x ^ 2 + y ^ 2) + 2z ^ 2-4 (4xy + yz + 2xz) = 0, lalu Manakah dari opsi berikut ini yang benar ? (a) x / y = 1/2 (b) y / z = 1/4 (c) x / y = 1/3 (d) x, y, z berada di A.P

Misalkan x, y, z adalah tiga bilangan real dan berbeda yang memenuhi Persamaan 8 (4x ^ 2 + y ^ 2) + 2z ^ 2-4 (4xy + yz + 2xz) = 0, lalu Manakah dari opsi berikut ini yang benar ? (a) x / y = 1/2 (b) y / z = 1/4 (c) x / y = 1/3 (d) x, y, z berada di A.P
Anonim

Menjawab:

Jawabannya adalah (a).

Penjelasan:

# 8 (4x ^ 2 + y ^ 2) + 2z ^ 2-4 (4xy + yz + 2xz) = 0 # dapat ditulis sebagai

# 32x ^ 2 + 8y ^ 2 + 2z ^ 2-16xy-4yz-8xz = 0 #

atau # 16x ^ 2 + 4y ^ 2 + z ^ 2-8xy-2yz-4xz = 0 #

yaitu # (4x) ^ 2 + (2y) ^ 2 + z ^ 2-4x * 2y-2y * z-4x * z = 0 #

jika # a = 4x #, # b = 2t # dan # c = z #, lalu ini

# a ^ 2 + b ^ 2 + c ^ 2-ab-bc-ca = 0 #

atau # 2a ^ 2 + 2b ^ 2 + 2c ^ 2-2ab-2bc-2ca = 0 #

atau # (a ^ 2 + b ^ 2-2ab) + (b ^ 2 + c ^ 2-2bc) + (c ^ 2 + a ^ 2-2ac) = 0 #

atau # (a-b) ^ 2 + (b-c) ^ 2 + (c-a) ^ 2 = 0 #

Sekarang jika jumlah tiga kotak adalah #0#, masing-masing harus nol.

Karenanya # a-b = 0 #, # b-c = 0 # dan # c-a = 0 #

yaitu # a = b = c # dan dalam kasus kami # 4x = 2y = z = k # mengatakan

kemudian # x = k / 4 #, # y = k / 2 # dan # z = k #

yaitu # x, y # dan # z # berada di G.P, dan # x / y = 2/4 = 1/2 #

# y / z = 1/2 # dan karenanya jawabannya adalah (a).

# x, y, z # adalah tiga angka nyata dan berbeda yang memenuhi Persamaan

Diberikan

# 8 (4x ^ 2 + y ^ 2) + 2z ^ 2-4 (4xy + yz + 2xz) = 0 #

# => 32x ^ 2 + 8y ^ 2 + 2z ^ 2-16xy-4yz-8xz = 0 #

# => 16x ^ 2 + 4y ^ 2-16xy + 16x ^ 2 + z ^ 2-8xz + 4y ^ 2 + z ^ 2-4yz = 0 #

# => (4x) ^ 2 + (2y) ^ 2-2 * 4x * 2y + (4x) ^ 2 + z ^ 2-2 * 4x * z + (2y) ^ 2 + z ^ 2-2 * 2y * z = 0 #

# => (4x-2y) ^ 2 + (4x-z) ^ 2 + (2y-z) ^ 2 = 0 #

Jumlah tiga jumlah nyata kuadrat menjadi nol masing-masing harus nol.

Karenanya # 4x-2y = 0-> x / y = 2/4 = 1/2 hingga #Opsi (a)

# 4x-z = 0 => 4x = z #

dan

# 2y-z = 0 => 2y = z #