Kami memiliki DeltaABC dan titik M sedemikian sehingga vec (BM) = 2vec (MC). Bagaimana menentukan x, y sedemikian rupa sehingga vec (AM) = xvec (AB) + yvec (AC)?
Jawabannya adalah x = 1/3 dan y = 2/3 Kami menerapkan hubungan Chasles 'vec (AB) = vec (AC) + vec (CB) Oleh karena itu, vec (BM) = 2vec (MC) vec (BA) + vec (AM) = 2 (vec (MA) + vec (AC)) vec (AM) -2vec (MA) = - vec (BA) + 2vec (AC) Namun, vec (AM) = - vec (MA) dan vec (BA) = - vec (AB) Jadi, vec (AM) + 2vec (AM) = vec (AB) + 2vec (AC) 3vec (AM) = vec (AB) + 2vec (AC) vec (AM) = 1 / 3vec (AB) + 2 / 3vec (AC) Jadi, x = 1/3 dan y = 2/3
Biarkan bar (AB) dipotong menjadi segmen yang sama dan tidak sama pada C dan D Tunjukkan bahwa persegi panjang yang dikandung oleh bar (AD) xxDB bersama-sama dengan kuadrat pada CD sama dengan kuadrat pada CB?
Dalam gambar C adalah titik tengah AB. Jadi AC = BC Sekarang kotak yang berisi bar (AD) dan bar (DB) bersama dengan onbar kotak (CD) = bar (AD) xxbar (DB) + bar (CD) ^ 2 = (bar (AC) + bar ( CD)) xx (bar (BC) -bar (CD)) + bar (CD) ^ 2 = (bar (BC) + bar (CD)) xx (bar (BC) -bar (CD)) + bar (CD ) ^ 2 = bar (BC) ^ 2-cancel (bar (CD) ^ 2) + cancel (bar (CD) ^ 2) = bar (BC) ^ 2 -> "Square on CB" Terbukti
Biarkan topi (ABC) menjadi sembarang segitiga, peregangan batang (AC) hingga D sedemikian rupa sehingga batang (CD) bar (CB); regangkan juga batang (CB) ke dalam E sehingga batang (CE) bar (CA). Bar segmen (DE) dan bar (AB) bertemu di F. Tunjukkan bahwa topi (DFB sama kaki?
Sebagai berikut Ref: Diberikan Gambar "Dalam" DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB "Lagi dalam" DeltaABC dan DeltaDEC bar (CE) ~ = bar (AC) -> "oleh konstruksi "bar (CD) ~ = bar (CB) ->" dengan konstruksi "" Dan "/ _DCE =" berlawanan secara vertikal "/ _BCA" Karenanya "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Sekarang dalam "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "Jadi" bar (FB) ~ = bar (FD) => DeltaFBD "isosceles"