Menjawab:
Kemiringan garis apa pun yang tegak lurus terhadap garis yang melewatinya
Penjelasan:
Kemiringan garis melewati
aku s
Produk dari lereng garis tegak lurus adalah
tegak lurus terhadap garis yang melewati
aku s
Garis n melewati titik (6,5) dan (0, 1). Berapakah intersep-y garis k, jika garis k tegak lurus terhadap garis n dan melewati titik (2,4)?
7 adalah y-intersep dari garis k Pertama, mari kita cari kemiringan untuk garis n. (1-5) / (0-6) (-4) / - 6 2/3 = m Kemiringan garis n adalah 2/3. Itu berarti kemiringan garis k, yang tegak lurus terhadap garis n, adalah kebalikan dari 2/3, atau -3/2. Jadi persamaan yang kita miliki sejauh ini adalah: y = (- 3/2) x + b Untuk menghitung b atau intersep-y, cukup masukkan (2,4) ke dalam persamaan. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Jadi intersep y adalah 7
Berapa kemiringan garis yang tegak lurus terhadap garis yang melewati (11,12) dan (-15, -2)?
M_2 = -13 / 7 "kemiringan garis yang lewat (11,12) dan (-15, -2) adalah:" m_1 = 7/13 m_2: "kemiringan garis yang tegak lurus dengan garis yang melewati A, B" m_1 * m_2 = -1 7/13 * m_2 = -1 m_2 = -13 / 7
Tulis bentuk persamaan titik-kemiringan dengan kemiringan yang diberikan yang melewati titik yang ditunjukkan. A.) garis dengan kemiringan -4 yang melewati (5,4). dan juga B.) garis dengan kemiringan 2 yang melewati (-1, -2). tolong bantu, ini membingungkan?
Y-4 = -4 (x-5) "dan" y + 2 = 2 (x + 1)> "persamaan garis dalam" color (blue) "form-slope form" adalah. • warna (putih) (x) y-y_1 = m (x-x_1) "di mana m adalah kemiringan dan" (x_1, y_1) "titik pada garis" (A) "diberikan" m = -4 "dan "(x_1, y_1) = (5,4)" menggantikan nilai-nilai ini ke dalam persamaan menghasilkan "y-4 = -4 (x-5) larrcolor (biru)" dalam bentuk titik-lereng "(B)" diberikan "m = 2 "dan" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (biru) " dalam bentuk titi