Bentuk standar dari persamaan parabola adalah y = 2x ^ 2 + 16x + 17. Apa bentuk verteks dari persamaan?
Bentuk simpul umum adalah y = a (x-h) ^ 2 + k. Silakan lihat penjelasan untuk formulir simpul khusus. "A" dalam bentuk umum adalah koefisien dari istilah kuadrat dalam bentuk standar: a = 2 Koordinat x dalam vertex, h, ditemukan menggunakan rumus: h = -b / (2a) h = - 16 / (2 (2) h = -4 Koordinat y dari vertex, k, ditemukan dengan mengevaluasi fungsi yang diberikan pada x = h: k = 2 (-4) ^ 2 + 16 (-4) +17 k = -15 Mengganti nilai-nilai ke dalam bentuk umum: y = 2 (x - 4) ^ 2-15 larr bentuk verteks spesifik
Bentuk verteks dari persamaan parabola adalah x = (y - 3) ^ 2 + 41, apa bentuk standar dari persamaan?
Y = + - sqrt (x-41) +3 Kita harus menyelesaikannya untuk y. Setelah kita selesai melakukannya, kita dapat memanipulasi sisa masalah (jika perlu) untuk mengubahnya ke bentuk standar: x = (y-3) ^ 2 + 41 kurangi 41 di kedua sisi x-41 = (y -3) ^ 2 mengambil akar kuadrat dari kedua sisi warna (merah) (+ -) sqrt (x-41) = y-3 tambahkan 3 ke kedua sisi y = + - sqrt (x-41) +3 atau y = 3 + -sqrt (x-41) Bentuk standar dari fungsi Root Square adalah y = + - sqrt (x) + h, jadi jawaban akhir kita harus y = + - sqrt (x-41) +3
Bentuk verteks dari persamaan parabola adalah y = 4 (x-2) ^ 2 -1. Apa bentuk standar dari persamaan?
Y = 4x ^ 2-16x + 15> "persamaan parabola dalam bentuk standar adalah" • warna (putih) (x) y = kapak ^ 2 + bx + cto (a! = 0) "memperluas faktor dan menyederhanakan "y = 4 (x ^ 2-4x + 4) -1 warna (putih) (y) = 4x ^ 2-16x + 16-1 warna (putih) (y) = 4x ^ 2-16x + 15