Menjawab:
Lihat proses solusi di bawah ini:
Penjelasan:
Untuk menemukan intersep, kita harus terlebih dahulu menemukan persamaan untuk garis yang berjalan melalui dua titik. Untuk menemukan persamaan garis, pertama-tama kita harus menemukan kemiringan garis. Kemiringan dapat ditemukan dengan menggunakan rumus:
Dimana
Mengganti nilai dari titik-titik dalam masalah memberi:
Kita sekarang dapat menggunakan rumus slope-intercept untuk menemukan persamaan untuk garis. Bentuk slope-intercept dari persamaan linear adalah:
Dimana
Kami dapat mengganti kemiringan yang kami perhitungkan
Kita sekarang dapat mengganti nilai dari titik kedua untuk
Sekarang, kita bisa mengganti kemiringan yang kita hitung dan nilainya
y-intersep:
Untuk menemukan
x-intersep:
Untuk menemukan
Grafik garis l pada bidang xy melewati titik (2,5) dan (4,11). Grafik garis m memiliki kemiringan -2 dan x-intersep 2. Jika titik (x, y) adalah titik perpotongan garis l dan m, berapakah nilai y?
Y = 2 Langkah 1: Tentukan persamaan garis l Kita miliki dengan rumus kemiringan m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Sekarang dengan bentuk slope per titik persamaannya adalah y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Langkah 2: Tentukan persamaan garis m m-intersep x akan selalu have y = 0. Oleh karena itu, titik yang diberikan adalah (2, 0). Dengan kemiringan, kita memiliki persamaan berikut. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Langkah 3: Tulis dan selesaikan sistem persamaan Kami ingin mencari solusi sistem {(y = 3x - 1), (y = -2x + 4):} Dengan substitusi: 3x - 1 =
Dua guci masing-masing berisi bola hijau dan bola biru. Guci I berisi 4 bola hijau dan 6 bola biru, dan Guci ll berisi 6 bola hijau dan 2 bola biru. Sebuah bola diambil secara acak dari masing-masing guci. Berapa probabilitas bahwa kedua bola berwarna biru?
Jawabannya adalah = 3/20 Kemungkinan menggambar bola biru dari Guci I adalah P_I = warna (biru) (6) / (warna (biru) (6) + warna (hijau) (4)) = 6/10 Kemungkinan menggambar bola biru dari Guci II adalah P_ (II) = warna (biru) (2) / (warna (biru) (2) + warna (hijau) (6)) = 2/8 Kemungkinan kedua bola berwarna biru P = P_I * P_ (II) = 6/10 * 2/8 = 3/20
Pertanyaan 2: Baris FG berisi titik F (3, 7) dan G ( 4, 5). Jalur HI berisi titik H ( 1, 0) dan I (4, 6). Garis FG dan HI adalah ...? paralel tidak tegak lurus
"tidak"> "menggunakan yang berikut dalam kaitannya dengan kemiringan garis" • "garis paralel memiliki kemiringan yang sama" • "produk dari garis tegak lurus" = -1 "menghitung kemiringan m menggunakan" warna (biru) "rumus gradien" • warna (putih) (x) m = (y_2-y_1) / (x_2-x_1) "let" (x_1, y_1) = F (3,7) "dan" (x_2, y_2) = G (-4, - 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12 / "" let "(x_1, y_1) = H (-1,0) "dan" (x_2, y_2) = I (4,6) m_ (HI) = (6-0) / (4 - (- 1)) = 6/5 m_ (FG)! = m_ (HI) "jadi garis tidak s