Menjawab:
Lihat proses memasukkan solusi di bawah ini:
Penjelasan:
Pertama, mari kita panggil nomor yang kita cari
Dalam masalah ini kata "of" berarti melipatgandakan atau kali.
"tiga perempat dari angka adalah 7/8" kemudian dapat ditulis ulang sebagai:
Kita sekarang bisa menyelesaikannya
Tiga syarat pertama dari 4 bilangan bulat adalah dalam Aritmatika P. dan tiga istilah terakhir adalah dalam Geometrik. Bagaimana menemukan 4 angka ini? Diberikan (1 + suku terakhir = 37) dan (jumlah dari dua bilangan bulat di tengah adalah 36)
"Reqd. Integer adalah," 12, 16, 20, 25. Mari kita sebut istilah t_1, t_2, t_3, dan, t_4, di mana, t_i di ZZ, i = 1-4. Mengingat bahwa, istilah t_2, t_3, t_4 membentuk GP, kita ambil, t_2 = a / r, t_3 = a, dan, t_4 = ar, di mana, an0 .. Juga diberikan bahwa, t_1, t_2, dan, t_3 adalah dalam AP, yang kita miliki, 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Jadi, secara keseluruhan, kita memiliki, Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, dan, t_4 = ar. Dengan apa yang diberikan, t_2 + t_3 = 36rArra / r + a = 36, yaitu, a (1 + r) = 36r ....................... .................................... (ast_1). Le
Jumlah tiga angka adalah 137. Angka kedua empat lebih dari, dua kali angka pertama. Angka ketiga adalah lima kurang dari, tiga kali angka pertama. Bagaimana Anda menemukan tiga angka itu?
Angka-angka adalah 23, 50 dan 64. Mulailah dengan menulis ekspresi untuk masing-masing dari tiga angka. Mereka semua terbentuk dari angka pertama, jadi mari kita sebut angka pertama x. Biarkan angka pertama menjadi x Angka kedua adalah 2x +4 Angka ketiga adalah 3x -5 Kita diberitahu bahwa jumlah mereka adalah 137. Ini berarti ketika kita menambahkan semuanya, jawabannya adalah 137. Tulis persamaan. (x) + (2x + 4) + (3x - 5) = 137 Kurung tidak perlu, mereka termasuk untuk kejelasan. 6x -1 = 137 6x = 138 x = 23 Begitu kita tahu angka pertama, kita dapat mencari dua lainnya dari ekspresi yang kita tulis di awal. 2x + 4 = 2 xx
Dua kali angka yang ditambahkan ke angka lain adalah 25. Tiga kali angka pertama dikurangi angka lainnya adalah 20. Bagaimana Anda menemukan angka-angka itu?
(x, y) = (9,7) Kami memiliki dua angka, x, y. Kita tahu dua hal tentang mereka: 2x + y = 25 3x-y = 20 Mari kita tambahkan dua persamaan ini bersama-sama yang akan membatalkan y: 5x + 0y = 45 x = 45/5 = 9 Kita sekarang dapat mengganti nilai x ke dalam salah satu persamaan asli (saya akan melakukan keduanya) untuk sampai ke y: 2x + y = 25 2 (9) + y = 25 18 + y = 25 y = 7 3x-y = 20 3 (9) -y = 20 27-y = 20 y = 7