Berapakah keliling oktagon biasa dengan radius panjang 20?

Berapakah keliling oktagon biasa dengan radius panjang 20?
Anonim

Menjawab:

Tergantung:

Jika jari-jari dalam adalah #20#, maka batasnya adalah:

# 320 (sqrt (2) - 1) ~~ 132.55 #

Jika jari-jari luarnya #20#, maka batasnya adalah:

# 160 sqrt (2-sqrt (2)) ~~ 122.46 #

Penjelasan:

Di sini lingkaran merah membatasi jari-jari luar dan lingkaran hijau lingkaran dalam.

Membiarkan # r # menjadi jari-jari luar - yaitu jari-jari lingkaran merah.

Kemudian simpul dari segi delapan berpusat di #(0, 0)# berada di:

# (+ - r, 0) #, # (0, + -r) #, # (+ - r / sqrt (2), + -r / sqrt (2)) #

Panjang satu sisi adalah jarak antara # (r, 0) # dan # (r / sqrt (2), r / sqrt (2)) #:

#sqrt ((r-r / sqrt (2)) ^ 2+ (r / sqrt (2)) ^ 2) #

# = r sqrt ((1-1 / sqrt (2)) ^ 2 + 1/2) #

# = r sqrt (1-2 / sqrt (2) + 1/2 + 1/2) #

# = r sqrt (2-sqrt (2)) #

Jadi total perimeter adalah:

#warna (merah) (8r sqrt (2-sqrt (2))) #

Jadi jika jari-jari luarnya #20#, maka batasnya adalah:

# 8 * 20 sqrt (2-sqrt (2)) = 160 sqrt (2-sqrt (2)) ~~ 122.46 #

#warna putih)()#

Jari-jari bagian dalam akan # r_1 = r cos (pi / 8) = r / 2 (sqrt (2 + sqrt (2))) #

Begitu #r = (2r_1) / (sqrt (2 + sqrt (2))) #

Maka total perimeter adalah

# 8r sqrt (2-sqrt (2)) = 8 (2r_1) / (sqrt (2 + sqrt (2))) sqrt (2-sqrt (2)) #

# = 16r_1 sqrt (2-sqrt (2)) / sqrt (2 + sqrt (2)) #

# = 16r_1 (sqrt (2-sqrt (2)) sqrt (2 + sqrt (2))) / (2 + sqrt (2)) #

# = 16r_1 (sqrt ((2-sqrt (2)) (2 + sqrt (2)))) / (2 + sqrt (2)) #

# = 16r_1 sqrt (2) / (2 + sqrt (2)) #

# = 16r_1 (sqrt (2) (2-sqrt (2))) / ((2 + sqrt (2)) (2-sqrt (2))) # #

# = 8r_1 (2sqrt (2) -2) #

# = warna (hijau) (16r_1 (sqrt (2) -1)) #

Jadi jika jari-jari dalam adalah #20#, maka batasnya adalah:

# 16 * 20 (sqrt (2) - 1) = 320 (sqrt (2) - 1) ~~ 132.55 #

#warna putih)()#

Seberapa baik perkiraan untuk # pi # apakah ini memberi kita?

Sementara kita di sini, kira-kira untuk apa # pi # yang bisa kita dapatkan dengan meratakan jari-jari dalam dan luar?

#pi ~~ 2 (2 (sqrt (2) - 1) + sqrt (2-sqrt (2))) ~~ 3.1876 #

… sangat tidak bagus.

Untuk mendapatkan perkiraan sebaik #355/113 ~~ 3.1415929#, ahli matematika Cina Zu Chongzhi menggunakan a #24576# (# = 2 ^ 13 xx 3 #) poligon sisi dan batang penghitung.

en.wikipedia.org/wiki/Zu_Chongzhi