Anda perlu membusuk
Kamu sedang mencari
Anda mengalikan kedua sisi dengan
Itu berarti kita sekarang harus berintegrasi
Bagaimana Anda mengintegrasikan int 1 / (x ^ 2 (2x-1)) menggunakan fraksi parsial?
2ln | 2x-1 | -2ln | x | + 1 / x + C Kita perlu mencari A, B, C sedemikian sehingga 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) untuk semua x. Lipat gandakan kedua sisi dengan x ^ 2 (2x-1) untuk mendapatkan 1 = Kapak (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Ax + 2Bx-B + Cx ^ 2 1 = (2A + C) x ^ 2 + (2B-A) xB Koefisien penyamaan memberi kita {(2A + C = 0), (2B-A = 0), (- B = 1):} Dan dengan demikian kita memiliki A = -2, B = -1, C = 4. Mengganti ini dalam persamaan awal, kita mendapatkan 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 Sekarang, mengintegrasikannya dengan istilah int 4 / (2x-1) dx-int 2 / x dx-int 1 / x
Bagaimana Anda menggunakan dekomposisi fraksi parsial untuk menguraikan fraksi untuk mengintegrasikan (3x) / ((x + 2) (x - 1))?
Format yang diperlukan dalam fraksi parsial adalah2 / (x + 2) + 1 / (x-1) Mari kita pertimbangkan dua konstanta A dan B sehingga A / (x + 2) + B / (x-1) Sekarang mengambil LCM kita get (A (x-1) + B (x + 2)) / ((x-1) (x + 2)) = 3x / ((x + 2) (x-1)) Membandingkan pembilang yang kita dapatkan ( A (x-1) + B (x + 2)) = 3x Sekarang menempatkan x = 1 kita mendapatkan B = 1 Dan menempatkan x = -2 kita mendapatkan A = 2 Jadi bentuk yang diperlukan adalah 2 / (x + 2) + 1 / (x-1) Semoga ini membantu !!
Bagaimana Anda mengintegrasikan int (x + 1) / (x ^ 2 + 6x) menggunakan fraksi parsial?
= int (x + 1) / (x ^ 2 + 6x) d x int (x + 1) / (x ^ 2 + 6x) d x