Menjawab:
Visual: Lihat grafik ini
Penjelasan:
Kami jelas tidak dapat mengevaluasi integral ini karena menggunakan teknik integrasi reguler yang telah kami pelajari. Namun, karena ini merupakan integral yang pasti, kita dapat menggunakan seri MacLaurin dan melakukan apa yang disebut istilah dengan integrasi istilah.
Kita harus menemukan seri MacLaurin. Karena kita tidak ingin menemukan turunan ke-9 dari fungsi itu, kita perlu mencoba dan memasangnya menjadi salah satu seri MacLaurin yang sudah kita ketahui.
Pertama, kami tidak suka
Jadi kita punya:
Kenapa kita melakukan ini? Nah, sekarang perhatikan itu
…untuk semua
Jadi, kita bisa menggunakan hubungan ini untuk keuntungan kita, dan ganti
Mengevaluasi integral:
Membatalkan
Dan sekarang, kita mengambil integral yang pasti kita mulai dengan masalah:
Catatan: Amati bagaimana kita sekarang tidak perlu khawatir tentang pembagian dengan nol dalam masalah ini, yang merupakan masalah yang kita miliki di integrand asli karena
Namun, pastikan Anda menyadari bahwa seri ini hanya baik pada intervalnya
Semoga itu membantu:)
Bagaimana Anda menggunakan seri binomial untuk memperluas (5 + x) ^ 4?
(5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^ 3 + x ^ 4 Ekspansi seri binomial untuk (a + bx) ^ n, ninZZ; n> 0 diberikan oleh: (a + bx) ^ n = jumlah_ (r = 0) ^ n ((n!) / (r! (n-1)!) a ^ (nr) (bx) ^ r) Jadi, kita memiliki: (5 + x) ^ 4 = (4!) / (0! * 4!) 5 ^ 4 + (4!) / (1! * 3!) (5) ^ 3x + (4!) / (2! * 2!) (5) ^ 2x ^ 2 + (4!) / (4! * 1!) (5) x ^ 3 + (4!) / (4! * 0!) X ^ 4 (5 + x) ^ 4 = 5 ^ 4 + 4 (5) ^ 3x + 6 (5) ^ 2x ^ 2 + 4 (5) x ^ 3 + x ^ 4 (5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^ 3 + x ^ 4
Bagaimana Anda menemukan tiga istilah pertama dari seri Maclaurin untuk f (t) = (e ^ t - 1) / t menggunakan seri Maclaurin dari e ^ x?
Kita tahu bahwa seri Maclaurin dari e ^ x adalah sum_ (n = 0) ^ oox ^ n / (n!). Kita juga dapat menurunkan deret ini dengan menggunakan ekspansi Maclaurin dari f (x) = sum_ (n = 0) ^ ok ^ ((n)) (0) x ^ n / (n!) dan fakta bahwa semua turunan dari e ^ x masih e ^ x dan e ^ 0 = 1. Sekarang, cukup gantikan seri di atas menjadi (e ^ x-1) / x = (sum_ (n = 0) ^ oo (x ^ n / (n!)) - 1) / x = (1 + sum_ (n = 1) ^ oo (x ^ n / (n!)) - 1) / x = (jumlah_ (n = 1) ^ oo (x ^ n / (n!))) / X = jumlah_ (n = 1) ^ oox ^ (n-1) / (n!) Jika Anda ingin indeks dimulai pada i = 0, cukup gantikan n = i + 1: = jumlah_ (i = 0) ^ oox ^ i / ((i + 1) !) Sek
Bagaimana Anda menggunakan seri binomial untuk memperluas sqrt (1 + x)?
Sqrt (1 + x) = (1 + x) ^ (1/2) = jumlah (1 // 2) _k / (k!) x ^ k dengan x dalam CC Gunakan generalisasi formula binomial ke bilangan kompleks. Ada generalisasi formula binomial ke bilangan kompleks. Rumus seri binomial umum tampaknya (1 + z) ^ r = jumlah ((r) _k) / (k!) Z ^ k dengan (r) _k = r (r-1) (r-2) .. . (r-k +1) (menurut Wikipedia). Mari kita terapkan pada ekspresi Anda. Ini adalah rangkaian daya yang sangat jelas, jika kita ingin memiliki peluang bahwa ini tidak berbeda kita perlu mengatur absx <1 dan ini adalah bagaimana Anda memperluas sqrt (1 + x) dengan seri binomial. Saya tidak akan menunjukkan formula itu