Apakah f (x) = 1-x-e ^ (- 3x) / x cekung atau cembung pada x = 4?

Apakah f (x) = 1-x-e ^ (- 3x) / x cekung atau cembung pada x = 4?
Anonim

Menjawab:

Mari kita ambil beberapa turunannya!

Penjelasan:

Untuk #f (x) = 1 - x - e ^ (- 3x) / x #, kita punya

#f '(x) = - 1 - (-3xe ^ (- 3x) -e ^ (- 3x)) / x ^ 2 #

Ini menyederhanakan (semacam) untuk

#f '(x) = - 1 + e ^ (- 3x) (3x + 1) / x ^ 2 #

Karena itu

#f '' (x) = e ^ (- 3x) (- 3x-2) / x ^ 3-3e ^ (- 3x) (3x + 1) / x ^ 2 #

# = e ^ (- 3x) ((- 3x-2) / x ^ 3-3 (3x + 1) / x ^ 2) #

# = e ^ (- 3x) ((- 3x-2) / x ^ 3 + (- 9x-3) / x ^ 2) #

# = e ^ (- 3x) ((- 3x-2) / x ^ 3 + (- 9x ^ 2-3x) / x ^ 3) #

# = e ^ (- 3x) ((- 9x ^ 2-6x-2) / x ^ 3) #

Sekarang, biarkan x = 4.

#f '' (4) = e ^ (- 12) ((- 9 (16) ^ 2-6 (4) -2) / 4 ^ 3) #

Perhatikan bahwa eksponensial selalu positif. Pembilang dari fraksi negatif untuk semua nilai positif x. Penyebutnya positif untuk nilai positif x.

Karena itu #f '' (4) <0 #.

Tarik kesimpulan Anda tentang cekung.