Menggunakan persamaan kuadrat, pecahkan x 2-12x + 40 = 0?

Menggunakan persamaan kuadrat, pecahkan x 2-12x + 40 = 0?
Anonim

Menjawab:

# x = 6 + 2i # dan # 6-2i #

Penjelasan:

Sesuai pertanyaan, kami punya

# x ^ 2-12x + 40 = 0 #

#:.# Dengan menerapkan rumus kuadratik, kita dapatkan

#x = (-b ± sqrt (b ^ 2-4ac)) / (2a) #

#:. x = (- (- 12) ± sqrt ((- 12) ^ 2-4 (1) (40))) / (2 (1)) #

#:. x = (12 ± sqrt (144-160)) / 2 #

#:. x = (12 ± sqrt (-16)) / 2 #

Sekarang, sebagai Diskriminan kami (#sqrt D #) #< 0#, kita akan mendapatkan akar imajiner (dalam hal #saya# / iota).

#:. x = (12 ± sqrt (16) xxsqrt (-1)) / 2 #

#:. x = (12 ± 4 xx i) / 2 #

#:. x = (6 ± 2i) #

#:. x = 6 + 2i, 6-2i #

Catatan: Bagi mereka yang tidak tahu, #saya# (iota) = #sqrt (-1) #.