Persamaan garis adalah 2x + 3y - 7 = 0, cari: - (1) kemiringan garis (2) persamaan garis tegak lurus dengan garis yang diberikan dan melewati persimpangan garis x-y + 2 = 0 dan 3x + y-10 = 0?
-3x + 2y-2 = 0 warna (putih) ("ddd") -> warna (putih) ("ddd") y = 3 / 2x + 1 Bagian pertama dalam banyak detail menunjukkan bagaimana prinsip pertama bekerja. Setelah terbiasa dengan ini dan menggunakan cara pintas Anda akan menggunakan lebih sedikit garis. warna (biru) ("Tentukan intersep dari persamaan awal") x-y + 2 = 0 "" ....... Persamaan (1) 3x + y-10 = 0 "" .... Persamaan ( 2) Kurangi x dari kedua sisi Persamaan (1) beri -y + 2 = -x Kalikan kedua sisi dengan (-1) + y-2 = + x "" .......... Persamaan (1_a ) Menggunakan Eqn (1_a) menggantikan x dalam Eqn (2
Biarkan P (x_1, y_1) menjadi titik dan biarkan aku menjadi garis dengan persamaan kapak + oleh + c = 0.Perlihatkan jarak d dari P-> l diberikan oleh: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Temukan jarak d dari titik P (6,7) dari garis l dengan persamaan 3x + 4y = 11?
D = 7 Biarkan l-> a x + b y + c = 0 dan p_1 = (x_1, y_1) suatu titik tidak pada l. Andaikata bahwa 0 dan memanggil d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 setelah mengganti y = - (a x + c) / b ke d ^ 2 kita memiliki d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Langkah selanjutnya adalah menemukan minimum d ^ 2 tentang x sehingga kita akan menemukan x sedemikian rupa sehingga d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Kejadian ini untuk x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Sekarang, mengganti nilai ini ke d ^ 2 kita memperoleh d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) jadi d
Apa persamaan garis yang melewati titik perpotongan garis y = x dan x + y = 6 dan yang tegak lurus terhadap garis dengan persamaan 3x + 6y = 12?
Barisnya adalah y = 2x-3. Pertama, temukan titik persimpangan y = x dan x + y = 6 menggunakan sistem persamaan: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 dan karena y = x: => y = 3 Titik persimpangan garis adalah (3,3). Sekarang kita perlu menemukan garis yang melewati titik (3,3) dan tegak lurus dengan garis 3x + 6y = 12. Untuk menemukan kemiringan garis 3x + 6y = 12, konversikan ke bentuk garis miring: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Jadi kemiringannya -1/2. Kemiringan garis tegak lurus adalah kebalikannya, sehingga berarti kemiringan garis yang kami coba temukan adalah - (- 2/1) a