Temukan dy / dx dari y = (5-x) ^ 3 (4 + x) ^ 5?

Temukan dy / dx dari y = (5-x) ^ 3 (4 + x) ^ 5?
Anonim

Menjawab:

# dy / dx = 5 (5-x) ^ 3 (4 + x) ^ 4-3 (4 + x) ^ 5 (5-x) ^ 2 #

Penjelasan:

# y = (5-x) ^ 3 (4 + x) ^ 5 #

# dy / dx = d / dx (5-x) ^ 3 (4 + x) ^ 5 #

#color (putih) (dy / dx) = (5-x) ^ 3d / dx (4 + x) ^ 5 + (4 + x) ^ 5d / dx (5-x) ^ 3 #

#color (white) (dy / dx) = (5-x) ^ 3 (5 * (4 + x) ^ (5-1) * d / dx 4 + x) + (4 + x) ^ 5 (3 * (5-x) ^ (3-1) * d / dx 5-x) #

#color (white) (dy / dx) = (5-x) ^ 3 (5 (4 + x) ^ 4 (1)) + (4 + x) ^ 5 (3 (5-x) ^ 2 (- 1)) #

#color (white) (dy / dx) = 5 (5-x) ^ 3 (4 + x) ^ 4-3 (4 + x) ^ 5 (5-x) ^ 2 #

Menjawab:

# dy / dx = 5 (5 - x) ^ 3 (4 + x) ^ 4 - 3 (5 - x) ^ 2 (4 + x) ^ 5 #

Penjelasan:

Berikut adalah cara berbeda yang saya pribadi suka gunakan pada pertanyaan-pertanyaan semacam ini.

Mengambil logaritma natural dari kedua belah pihak, kita mendapatkan:

#lny = ln (5 - x) ^ 3 (4 + x) ^ 5 #

Sekarang ingat hukum logaritma Anda. Yang paling penting di sini adalah #ln (ab) = ln (a) + ln (b) # dan #ln (a ^ n) = nlna #

#lny = ln (5 - x) ^ 3 + ln (4 + x) ^ 5 #

#lny = 3ln (5 -x) + 5ln (4 + x) #

Sekarang bedakan menggunakan aturan rantai dan fakta itu # d / dx (lnx) = 1 / x #. Jangan lupa bahwa Anda perlu membedakan sisi kiri dengan hormat # x #.

# 1 / y (dy / dx) = -3 / (5 - x) + 5 / (4 + x) #

# dy / dx = y (5 / (4 + x) - 3 / (5 - x)) #

# dy / dx = (5 - x) ^ 3 (4 + x) ^ 5 (5 / (4 + x) - 3 / (5 - x)) #

# dy / dx = 5 (5 - x) ^ 3 (4 + x) ^ 4 - 3 (5 - x) ^ 2 (4 + x) ^ 5 #

Yang merupakan hasil yang diperoleh oleh kontributor lain menggunakan aturan rantai secara eksklusif.

Semoga ini bisa membantu!