Menjawab:
# 0.#
Penjelasan:
#sebuah# menunjukkan # n ^ (th) # jangka waktu A.P.
Membiarkan, # d # menjadi perbedaan umum dari A.P., dan biarkan # S_n #
menjadi jumlah dari yang pertama # n # ketentuan
Lalu, kita tahu itu,
# a_n = a_1 + (n-1) d, dan, S_n = n / 2 {2a_1 + (n-1) d} …… (ast). #
Kita diberikan itu, untuk # p, q dalam NN; pltq, #
#a_ (p + 1) + a_ (p + 2) + a_ (p + 3) + … + a_q = 0 ………… (bintang). #
Menambahkan # {a_1 + a_2 + … + a_p} # di kedua sisi dari eqn ini., kita dapatkan, # {a_1 + a_2 + … + a_p} + {a_ (p + 1) + a_ (p + 2) + a_ (p + 3) + … + a_q}, #
# = {a_1 + a_2 + … + a_p} + {0} ……… karena, (bintang), yaitu,, #
# S_q = S_p. #
# q / cancel2 2a_1 + (q-1) d = p / cancel2 2a_1 + (p-1) d …… karena, (ast). #
#:. 2qa_1 + q (q-1) d- {2pa_1 + p (p-1) d} = 0. #
#:. 2a_1 (q-p) + d {q ^ 2-q- (p ^ 2-p)} = 0. #
#:. 2a_1 (q-p) + d {q ^ 2-p ^ 2-q + p} = 0. #
#:. 2a_1 (q-p) + d {(q-p) (q + p) -1 (q-p)} = 0. #
#:. (q-p) 2a_1 + d (q + p-1) = 0. #
#:. q = p, "yang tidak mungkin sebagai" qltp "(diberikan); atau," 2a_1 + d (q + p-1) = 0. #
#:. 2a_1 + d (q + p-1) = 0. #
# rArr S_ (p + q) = (p + q) / 2 2a_1 + d (q + p-1) = 0. #
Nikmati Matematika.!