Menjawab:
Poligon memiliki 9 sisi
Penjelasan:
Informasi apa yang kita ketahui dan bagaimana kita menggunakannya untuk memodelkan situasi ini?
Asumsi: Sudut eksternal kurang dari sudut internal
Demikian
Tidak
Begitu
Begitu
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tetapi juga
Ada
Begitu
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Jumlah ukuran dua sudut eksterior segitiga adalah 264 derajat. Berapa ukuran sudut eksterior ketiga?
Sudut luar poligon apa pun ditambahkan ke 360 sehingga sudut ke-3 Anda adalah 360 - 264 = 36
Segitiga memiliki sisi A, B, dan C. Sudut antara sisi A dan B adalah (7pi) / 12. Jika sisi C memiliki panjang 16 dan sudut antara sisi B dan C adalah pi / 12, berapa panjang sisi A?
A = 4.28699 unit Pertama-tama izinkan saya menyatakan sisi dengan huruf kecil a, b dan c Biarkan saya beri nama sudut antara sisi "a" dan "b" dengan / _ C, sudut antara sisi "b" dan "c" / _ A dan sudut antara sisi "c" dan "a" oleh / _ B. Catatan: - tanda / _ dibaca sebagai "sudut". Kita diberi / _C dan / _A. Diberikan sisi c = 16. Menggunakan Law of Sines (Sin / _A) / a = (sin / _C) / c menyiratkan Dosa (pi / 12) / a = sin ((7pi) / 12) / 16 menyiratkan 0,2588 / a = 0,9659 / 16 menyiratkan 0,2588 / a = 0,06036875 menyiratkan a = 0,2588 / 0,06036875 = 4,28
Segitiga memiliki sisi A, B, dan C. Sudut antara sisi A dan B adalah pi / 3. Jika sisi C memiliki panjang 12 dan sudut antara sisi B dan C adalah pi / 12, berapa panjang sisi A?
2 sqrt (6) (sqrt (3) -1) Dengan asumsi sudut yang berlawanan dengan sisi A, B dan C adalah / _A, / _B dan / _C. Kemudian / _C = pi / 3 dan / _A = pi / 12 Menggunakan Aturan Sinus (Sin / _A) / A = (Dosa / _B) / B = (Dosa / _C) / C yang kita miliki, (Dosa / _A) / A = (Dosa / _C) / C (Dosa (pi / 12)) / A = (Dosa (pi / 3)) / 12 A = (sqrt (3) -1) / (2 sqrt (2)) * 12 * 1 / (sqrt3 / 2) atau, A = 2 sqrt (6) (sqrt (3) -1) atau, A ~~ 3.586