Kami membutuhkan dua identitas ini untuk melengkapi bukti:
Saya akan mulai dengan sisi kanan, lalu memanipulasinya hingga terlihat seperti sisi kiri:
Itu buktinya. Semoga ini bisa membantu!
Kami berusaha membuktikan identitas:
# (tanx + sinx) / (2tanx) - = cos ^ 2 (x / 2) #
Pertimbangkan LHS ekspresi, dan gunakan definisi garis singgung:
# LHS = (tanx + sinx) / (2tanx) #
# = (sinx / cosx + sinx) / (2 (sinx / cosx)) #
# = (cosx / sinx) ((sinx / cosx + sinx) / 2) #
# = (cosx / sinx * sinx / cosx + cosx / sinx * sinx) / 2 #
# = (1 + cosx) / 2 #
Sekarang, Pertimbangkan RHS, dan gunakan identitas:
# cos2A - = 2cos ^ 2A - 1 #
Memberi kami:
# cosx - = 2cos ^ 2 (x / 2) - 1 => 1 + cosx - = 2cos ^ 2 (x / 2) #
#:. cos ^ 2 (x / 2) = (1 + cosx) / 2 = RHS #
Demikian:
# LHS = RHS => (tanx + sinx) / (2tanx) - = cos ^ 2 (x / 2) # QED
Tunjukkan bahwa cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Saya agak bingung jika saya membuat Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), itu akan berubah menjadi negatif karena cos (180 °-theta) = - costheta in kuadran kedua. Bagaimana cara saya membuktikan pertanyaan itu?
Silahkan lihat di bawah ini. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Bagaimana Anda membuktikan (cotx + cscx / sinx + tanx) = (cotx) (cscx)?
Diverifikasi di bawah (cotx + cscx) / (sinx + tanx) = (cotx) (cscx) (cosx / sinx + 1 / sinx) / (sinx + sinx / cosx) = (cotx) (cscx) ((cosx + 1) / sinx) / ((sinxcosx) / cosx + sinx / cosx) = (cotx) (cscx) ((cosx + 1) / sinx) / ((sinx (cosx + 1)) / cosx) = (cotx) (cscx) ) (batal (cosx + 1) / sinx) * (cosx / (sinxcancel ((cosx + 1))))) = (cotx) (cscx) (cosx / sinx * 1 / sinx) = (cotx) (cscx) ( cotx) (cscx) = (cotx) (cscx)
Bagaimana Anda membuktikan: secx - cosx = sinx tanx?
Menggunakan definisi secx dan tanx, bersama dengan identitas dosa ^ 2x + cos ^ 2x = 1, kita memiliki secx-cosx = 1 / cosx-cosx = 1 / cosx-cos ^ 2x / cosx = (1-cos ^ 2x ) / cosx = sin ^ 2x / cosx = sinx * sinx / cosx = sinxtanx