Menjawab:
Penjelasan:
Periode kedua dosa kt dan cos kt adalah
Jadi, secara terpisah, periode dari dua istilah dalam f (t) adalah
Untuk jumlah, periode gabungan diberikan oleh
L = 13 dan M = 1. Nilai umum =
Memeriksa:
Tunjukkan bahwa cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Saya agak bingung jika saya membuat Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), itu akan berubah menjadi negatif karena cos (180 °-theta) = - costheta in kuadran kedua. Bagaimana cara saya membuktikan pertanyaan itu?
Silahkan lihat di bawah ini. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Apa periode dan periode dasar y (x) = sin (2x) + cos (4x)?
Y (x) adalah jumlah dari dua fungsi trignometrik. Periode sin 2x adalah (2pi) / 2 yaitu pi atau 180 derajat. Periode cos4x adalah (2pi) / 4 yaitu pi / 2, atau 90 derajat. Temukan LCM 180 dan 90. Itu akan menjadi 180. Karenanya periode fungsi yang diberikan akan pi
Apa periode f (t) = dosa (t / 13) + cos ((13t) / 24)?
Periode adalah = 4056pi Periode T dari fungsi periodik sedemikian rupa sehingga f (t) = f (t + T) Di sini, f (t) = sin (1 / 13t) + cos (13 / 24t) Oleh karena itu, f ( t + T) = sin (1/13 (t + T)) + cos (13/24 (t + T)) = sin (1 / 13t + 1 / 13T) + cos (13 / 24t + 13 / 24T) = sin (1 / 13t) cos (1 / 13T) + cos (1 / 13t) sin (1 / 13T) + cos (13 / 24t) cos (13 / 24T) cos (13 / 24t) sin (13 / 24t) sin (13 / 24T) As, f (t) = f (t + T) {(cos (1 / 13T) = 1), (sin (1 / 13T) = 0), (cos (13 / 24T) = 1), ( sin (13 / 24T) = 0):} <=>, {(1 / 13T = 2pi), (13 / 24T = 2pi):} <=>, {(T = 26pi = 338pi), (T = 48 / 13pi = 48pi):} <=&