Berapakah vektor satuan yang ortogonal terhadap bidang yang berisi (3i + 2j - 3k) dan (2i + j + 2k)?

Berapakah vektor satuan yang ortogonal terhadap bidang yang berisi (3i + 2j - 3k) dan (2i + j + 2k)?
Anonim

Menjawab:

Vektor satuan adalah # = 1 / sqrt194 〈7, -12, -1〉 #

Penjelasan:

Produk silang dari 2 vektor dihitung dengan determinan

# | (veci, vecj, veck), (d, e, f), (g, h, i) | #

dimana # 〈D, e, f〉 # dan # 〈G, h, i〉 # adalah 2 vektor

Di sini, kita punya # veca = 〈3,2, -3〉 # dan # vecb = 〈2,1,2〉 #

Karena itu, # | (veci, vecj, veck), (3,2, -3), (2,1,2) | #

# = veci | (2, -3), (1,2) | -vecj | (3, -3), (2,2) | + lihat | (3,2), (2,1) | #

# = veci (2 * 2 + 3 * 1) -vecj (3 * 2 + 3 * 2) + veck (3 * 1-2 * 2) #

# = 〈7, -12, -1〉 = vecc #

Verifikasi dengan melakukan produk 2 titik

#〈7,-12,-1〉.〈3,2,-3〉=7*3-12*2+1*3=0#

#〈7,-12,-1〉.〈2,1,2〉=7*2-12*1-1*2=0#

Begitu, # vecc # tegak lurus terhadap # veca # dan # vecb #

Modulus dari # vecc # aku s

# || vecc || = sqrt (7 ^ 2 + (- 12) ^ 2 + (- 1) ^ 2) = sqrt (49 + 144 + 1) = sqrt194 #

Karena itu, Vektor satuan adalah

# hatc = 1 / sqrt194 〈7, -12, -1〉 #