Menjawab:
Verteksnya adalah
Penjelasan:
Pertama tempatkan persamaan dalam bentuk standar.
Ini adalah persamaan kuadrat dalam bentuk standar,
Vertex adalah titik maksimum atau minimum parabola. Dalam hal ini, sejak
Untuk menemukan simpul parabola dalam bentuk standar, pertama-tama cari sumbu simetri, yang akan memberi kita
Sumbu Simetri
Ganti nilai untuk
Menyederhanakan.
Tentukan nilai untuk
Pengganti
Menyederhanakan.
Menyederhanakan.
Vertex =
grafik {y = x ^ 2-8x-9 -10.21, 7.01, -26.63, -18.02}
Menjawab:
Penjelasan:
Kita diberikan
Pertama saya ingin mendapatkan ini ke bentuk standar. Ini mudah, kita hanya perlu memesan ulang agar sesuai
Sekarang kita punya
Sekarang kita pasang
Baiklah, mari kita lihat itu:
Setelah kita melakukan semua pekerjaan ini, mari kita buat
Sekarang kita punya
Sekarang ini dalam bentuk simpul, dan sekali kita memilikinya sangat cepat untuk menemukan simpul tersebut. Ini adalah bentuk simpul,
Dalam hal persamaan yang kami miliki
TOLONG DICATAT bahwa
contoh:
Jadi, simpulnya adalah
grafik {x ^ 2-8x-9}
Sepertinya kita benar !! Pekerjaan yang baik!
Basis sebuah segitiga sama kaki terletak pada garis x-2y = 6, simpul yang berlawanan adalah (1,5), dan kemiringan satu sisi adalah 3. Bagaimana Anda menemukan koordinat dari simpul lainnya?
Dua simpul adalah (-2, -4) dan (10,2) Pertama mari kita temukan titik tengah pangkalan. Karena basis pada x-2y = 6, tegak lurus dari vertex (1,5) akan memiliki persamaan 2x + y = k dan ketika melewati (1,5), k = 2 * 1 + 5 = 7. Maka persamaan tegak lurus dari verteks ke basis adalah 2x + y = 7. Persimpangan x-2y = 6 dan 2x + y = 7 akan memberi kita titik tengah basis. Untuk ini, menyelesaikan persamaan ini (dengan meletakkan nilai x = 2y + 6 dalam persamaan kedua 2x + y = 7) memberi kita 2 (2y + 6) + y = 7 atau 4y + 12 + y = 7 atau 5y = -5 . Oleh karena itu, y = -1 dan menempatkan ini dalam x = 2y + 6, kita mendapatkan x =
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?
{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Apa bentuk simpul dari persamaan parabola dengan fokus di (1,20) dan directrix dari y = 23?
Y = x ^ 2 / -6 + x / 3 + 64/3 Diberikan - Fokus (1,20) directrix y = 23 Titik puncak parabola adalah di kuadran pertama. Directrix-nya berada di atas puncak. Karenanya parabola terbuka ke bawah. Bentuk umum dari persamaan adalah - (xh) ^ 2 = - 4xxaxx (yk) Di mana - h = 1 [koordinat-X dari titik] k = 21,5 [Koordinat-Y dari titik] Kemudian - (x-1 ) ^ 2 = -4xx1.5xx (y-21.5) x ^ 2-2x + 1 = -6y + 129 -6y + 129 = x ^ 2-2x + 1 -6y = x ^ 2-2x + 1-129 y = x ^ 2 / -6 + x / 3 + 128/6 y = x ^ 2 / -6 + x / 3 + 64/3