Menjawab:
Daerah itu
Penjelasan:
Area adalah setengah dari produk dari dua sisi kali sinus dari sudut di antara mereka.
Di sini kita diberikan dua sisi tetapi bukan sudut di antara mereka, kita diberi dua sudut lainnya sebagai gantinya. Jadi pertama-tama tentukan sudut yang hilang dengan mencatat bahwa jumlah dari ketiga sudut adalah
Maka luas segitiga adalah
Daerah
Kita harus menghitung
Kemudian area tersebut diberikan oleh:
Daerah
Segitiga memiliki sisi A, B, dan C. Sudut antara sisi A dan B adalah (5pi) / 6 dan sudut antara sisi B dan C adalah pi / 12. Jika sisi B memiliki panjang 1, berapakah luas segitiga?
Jumlah sudut memberikan segitiga sama kaki. Setengah dari sisi masuk dihitung dari cos dan tinggi dari dosa. Area ditemukan seperti bujur sangkar (dua segitiga). Area = 1/4 Jumlah semua segitiga dalam derajat adalah 180 ^ o dalam derajat atau π dalam radian. Oleh karena itu: a + b + c = π π / 12 + x + (5π) / 6 = π x = π-π / 12- (5π) / 6 x = (12π) / 12-π / 12- (10π) / 12 x = π / 12 Kami memperhatikan bahwa sudut a = b. Ini berarti bahwa segitiga adalah sama kaki, yang mengarah ke B = A = 1. Gambar berikut ini menunjukkan bagaimana tinggi berlawanan c dapat dihitung: Untuk sudut b: sin15 ^ o = h / A h = A * sin15 h = sin15 U
Segitiga memiliki sisi A, B, dan C. Sudut antara sisi A dan B adalah (7pi) / 12. Jika sisi C memiliki panjang 16 dan sudut antara sisi B dan C adalah pi / 12, berapa panjang sisi A?
A = 4.28699 unit Pertama-tama izinkan saya menyatakan sisi dengan huruf kecil a, b dan c Biarkan saya beri nama sudut antara sisi "a" dan "b" dengan / _ C, sudut antara sisi "b" dan "c" / _ A dan sudut antara sisi "c" dan "a" oleh / _ B. Catatan: - tanda / _ dibaca sebagai "sudut". Kita diberi / _C dan / _A. Diberikan sisi c = 16. Menggunakan Law of Sines (Sin / _A) / a = (sin / _C) / c menyiratkan Dosa (pi / 12) / a = sin ((7pi) / 12) / 16 menyiratkan 0,2588 / a = 0,9659 / 16 menyiratkan 0,2588 / a = 0,06036875 menyiratkan a = 0,2588 / 0,06036875 = 4,28
Segitiga memiliki sisi A, B, dan C. Sudut antara sisi A dan B adalah (5pi) / 12 dan sudut antara sisi B dan C adalah pi / 12. Jika sisi B memiliki panjang 4, berapakah luas segitiga?
Pl, lihat di bawah Sudut antara sisi A dan B = 5pi / 12 Sudut antara sisi C dan B = pi / 12 Sudut antara sisi C dan A = pi -5pi / 12-pi / 12 = pi / 2 maka segitiga adalah sudut siku kanan dan B adalah sisi miringnya. Oleh karena itu sisi A = Bsin (pi / 12) = 4sin (pi / 12) sisi C = Bcos (pi / 12) = 4cos (pi / 12) Jadi area = 1 / 2ACsin (pi / 2) = 1/2 * 4sin (pi / 12) * 4cos (pi / 12) = 4 * 2sin (pi / 12) * cos (pi / 12) = 4 * sin (2pi / 12) = 4 * sin (pi / 6) = 4 * 1 / 2 = 2 unit persegi