Biarkan l menjadi garis yang dijelaskan oleh persamaan kapak + dengan + c = 0 dan biarkan P (x, y) menjadi titik tidak pada l. Nyatakan jarak, d antara l dan P dalam hal koefisien a, b dan c dari persamaan garis?
Lihat di bawah. http://socratic.org/questions/let-l-be-a-line-description-by-equation-ax-by-c-0-and-let-pxy-be-a-point-not-on- -1 # 336210
Biarkan phi_n menjadi fungsi eigen energi normal yang dinormalisasi dengan tepat dari osilator harmonik, dan biarkan psi = hatahata ^ (†) phi_n. Apa psi sama dengan?
Pertimbangkan osilator harmonik Hamiltonian ... hatH = hatp ^ 2 / (2mu) + 1 / 2muomega ^ 2hatx ^ 2 = 1 / (2mu) (hatp ^ 2 + mu ^ 2omega ^ 2 hatx ^ 2) Sekarang, tentukan substitusi : hatx "'" = hatxsqrt (muomega) "" "" "" hatp "'" = hatp / sqrt (muomega) Ini memberi: hatH = 1 / (2mu) (hatp "'" ^ 2 cdot muomega + mu ^ 2omega ^ 2 (hatx "'" ^ 2) / (muomega)) = omega / 2 (hatp "'" ^ 2 + hatx "'" ^ 2) Berikutnya, pertimbangkan subtitusi di mana: hatx "' '" = (hatx " '") / sqrt (ℏ)"
Biarkan vec (x) menjadi vektor, sehingga vec (x) = ( 1, 1), "dan biarkan" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], yaitu Rotation Operator. Untuk theta = 3 / 4pi temukan vec (y) = R (theta) vec (x)? Buat sketsa yang menunjukkan x, y, dan θ?
Ini ternyata merupakan rotasi berlawanan arah jarum jam. Bisakah Anda menebak berapa derajat? Misalkan T: RR ^ 2 | -> RR ^ 2 menjadi transformasi linear, di mana T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Perhatikan bahwa transformasi ini direpresentasikan sebagai matriks transformasi R (theta). Apa artinya adalah karena R adalah matriks rotasi yang mewakili transformasi rotasi, kita dapat mengalikan R dengan vecx untuk mencapai transformasi ini. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> Untuk matriks MxxK dan KxxN, h