Menjawab:
1
Penjelasan:
grafik {(tanx) / x -20.27, 20.28, -10.14, 10.13}
Dari grafik, Anda dapat melihatnya sebagai
Ingat batas yang terkenal:
#lim_ (x-> 0) sinx / x = 1 #
Sekarang, mari kita lihat masalah kita dan memanipulasi sedikit:
#lim_ (x-> 0) tanx / x #
# = lim_ (x-> 0) (sinx "/" cosx) / x #
# = lim_ (x-> 0) ((sinx / x)) / (cosx) #
# = lim_ (x-> 0) (sinx / x) * (1 / cosx) #
Ingatlah bahwa batas suatu produk adalah produk dari batas, jika kedua batas tersebut ditentukan.
# = (lim_ (x-> 0) sinx / x) * (lim_ (x-> 0) 1 / cosx) #
# = 1 * 1 / cos0 #
#= 1#
Jawaban akhir
Berapa batas saat x mendekati 0 dari 1 / x?
Batasnya tidak ada. Secara konvensional, batas tidak ada, karena batas kanan dan kiri tidak setuju: lim_ (x-> 0 ^ +) 1 / x = + oo lim_ (x-> 0 ^ -) 1 / x = -oo grafik {1 / x [-10, 10, -5, 5]} ... dan tidak konvensional? Deskripsi di atas mungkin sesuai untuk penggunaan normal di mana kita menambahkan dua objek + oo dan -oo ke baris nyata, tetapi itu bukan satu-satunya pilihan. Baris proyektif Nyata, RR_oo menambahkan hanya satu titik ke RR, berlabel oo. Anda dapat menganggap RR_oo sebagai hasil dari melipat garis nyata menjadi sebuah lingkaran dan menambahkan titik di mana kedua "ujung" bergabung. Jika kita
Berapa batas (1+ (a / x) saat x mendekati tak terhingga?
Lim_ (x-> oo) (1 + a / x) = 1 lim_ (x-> oo) (1 + a / x) = 1+ lim_ (x-> oo) a / x Sekarang, untuk semua yang terbatas a, lim_ (x-> oo) a / x = 0 Karenanya, lim_ (x-> oo) (1 + a / x) = 1
Berapa batas x saat mendekati 0 dari (1 + 2x) ^ cscx?
Jawabannya adalah e ^ 2. Alasannya tidak sesederhana itu. Pertama, Anda harus menggunakan trik: a = e ^ ln (a). Oleh karena itu, (1 + 2x) ^ (1 / sinx) = e ^ u, di mana u = ln ((1 + 2x) ^ (1 / sinx)) = ln (1 + 2x) / sinx Oleh karena itu, sebagai e ^ x adalah fungsi kontinu, kita dapat memindahkan batas: lim_ (x-> 0) e ^ u = e ^ (lim_ (x-> 0) u) Mari kita menghitung batas u ketika x mendekati 0. Tanpa teorema apa pun, perhitungan akan menjadi keras. Oleh karena itu, kami menggunakan teorema de l'Hospital karena batasannya adalah tipe 0/0. lim_ (x-> 0) f (x) / g (x) = lim_ (x-> 0) ((f '(x)) / (g' (x)))