Proses:
1.)
Pertama kita akan menulis ulang persamaan dalam bentuk yang lebih mudah untuk dikerjakan.
Ambil yang terpenting dari kedua sisi:
2.)
Menulis ulang dalam hal sinus:
3.)
Pecahkan untuk
4.)
5.)
6.)
Sekarang, mengambil turunannya harus lebih mudah. Sekarang hanya masalah aturan rantai.
Kami tahu itu
Jadi, ambil turunan dari fungsi luar, lalu kalikan dengan turunan dari
7.)
Turunan dari
8.)
Penyederhanaan 8. memberi kita:
9.)
Untuk membuat pernyataan sedikit lebih cantik, kita bisa membawa kotak
10.)
Menyederhanakan hasil:
11.)
Dan ada jawaban kita. Ingat, masalah turunan yang melibatkan fungsi trigonometri terbalik sebagian besar merupakan latihan pengetahuan Anda tentang identitas trigonometri. Gunakan mereka untuk memecah fungsi menjadi bentuk yang mudah dibedakan.
Apa turunan kedua dari x / (x-1) dan turunan pertama dari 2 / x?
Pertanyaan 1 Jika f (x) = (g (x)) / (h (x)) maka dengan Aturan Quotient f '(x) = (g' (x) * h (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Jadi jika f (x) = x / (x-1) maka turunan pertama f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) dan turunan kedua adalah f '' (x) = 2x ^ -3 Pertanyaan 2 Jika f (x) = 2 / x ini dapat ditulis ulang sebagai f (x) = 2x ^ -1 dan menggunakan prosedur standar untuk mengambil turunan f '(x) = -2x ^ -2 atau, jika Anda lebih suka f' (x) = - 2 / x ^ 2
Apa turunan pertama dan turunan kedua dari x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2 untuk menemukan turunan pertama kita cukup menggunakan tiga aturan: 1. Aturan daya d / dx x ^ n = nx ^ (n-1 ) 2. Aturan konstan d / dx (c) = 0 (di mana c adalah bilangan bulat dan bukan variabel) 3. Jumlah dan aturan perbedaan d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] turunan pertama menghasilkan: 4x ^ 3-0 yang disederhanakan menjadi 4x ^ 3 untuk menemukan turunan kedua, kita harus menurunkan turunan pertama dengan kembali menerapkan aturan daya yang menghasilkan : 12x ^ 3 Anda dapat terus berjalan jika suka: turunan ketiga = 36x ^ 2 turunan keempat = 72x
Bagaimana Anda menggunakan definisi batas turunan untuk menemukan turunan dari y = -4x-2?
-4 Definisi turunan dinyatakan sebagai berikut: lim (h-> 0) (f (x + h) -f (x)) / h Mari kita terapkan rumus di atas pada fungsi yang diberikan: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Penyederhanaan dengan h = lim (h-> 0) (- 4) = -4