Untuk fungsi yang diberikan
Sekarang kita perlu menunjukkan itu, jika
Dengan mengingat hal ini, mari kita lihat apa
Sejak
Tentukan variabel baru
Karena itu, jika
Biarkan f (x) = x-1. 1) Pastikan f (x) tidak genap atau ganjil. 2) Dapatkah f (x) ditulis sebagai jumlah dari fungsi genap dan fungsi ganjil? a) Jika demikian, perlihatkan solusi. Apakah ada solusi lain? b) Jika tidak, buktikan bahwa itu tidak mungkin.
Biarkan f (x) = | x -1 |. Jika f genap, maka f (-x) akan sama dengan f (x) untuk semua x. Jika f aneh, maka f (-x) akan sama dengan -f (x) untuk semua x. Perhatikan bahwa untuk x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Karena 0 tidak sama dengan 2 atau -2, f tidak genap atau ganjil. Mungkinkah f ditulis sebagai g (x) + h (x), di mana g genap dan h ganjil? Jika itu benar maka g (x) + h (x) = | x - 1 |. Sebut pernyataan ini 1. Ganti x dengan -x. g (-x) + h (-x) = | -x - 1 | Karena g adalah genap dan h adalah ganjil, kita memiliki: g (x) - h (x) = | -x - 1 | Sebut pernyataan ini 2. Menyatukan pernyataan 1 dan 2, kita meliha
Misalkan D = a ^ 2 + b ^ 2 + c ^ 2 di mana a dan b adalah bilangan bulat positif berturut-turut dan c = ab. Bagaimana Anda menunjukkan bahwa sqrtD adalah bilangan bulat positif aneh?
Lihat di bawah ini: Membuat a = n dan b = n + 1 dan menggantikannya dengan ^ 2 + b ^ 2 + a ^ 2b ^ 2 = n ^ 2 + (n + 1) ^ 2 + n ^ 2 (n + 1) ^ 2 yang menghasilkan 1 + 2 n + 3 n ^ 2 + 2 n ^ 3 + n ^ 4 tetapi 1 + 2 n + 3 n ^ 2 + 2 n ^ 3 + n ^ 4 = (1 + n + n ^ 2) ^ 2 yang merupakan kuadrat dari bilangan bulat ganjil
Catatan menunjukkan bahwa probabilitasnya adalah 0,00006 bahwa mobil akan memiliki ban kempes saat mengemudi melalui terowongan tertentu. Temukan kemungkinan bahwa setidaknya 2 dari 10.000 mobil yang melewati saluran ini akan memiliki ban kempes?
0.1841 Pertama, kita mulai dengan binomial: X ~ B (10 ^ 4,6 * 10 ^ -5), meskipun p sangat kecil, n sangat besar. Karena itu kami dapat memperkirakan ini dengan menggunakan normal. Untuk X ~ B (n, p); Y ~ N (np, np (1-p)) Jadi, kita memiliki Y ~ N (0.6,0.99994) Kami ingin P (x> = 2), dengan mengoreksi menggunakan normal bounds, kita memiliki P (Y> = 1.5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1.5-0.6) / sqrt (0.99994) ~~ 0.90 P (Z> = 0.90) = 1-P (Z <= 0.90) Menggunakan tabel-Z, kita menemukan bahwa z = 0.90 memberikan P (Z <= 0.90) = 0.8159 P (Z> = 0.90) = 1-P (Z <= 0,90) = 1-0,8159 = 0,1841