Pertanyaan # e8ab5

Pertanyaan # e8ab5
Anonim

Menjawab:

#cos (x + y) = (a ^ 2 + b ^ 2) / 2-1 #

Penjelasan:

Pertama, ingat apa #cos (x + y) # aku s:

#cos (x + y) = cosxcosy + sinxsiny #

Perhatikan bahwa:

# (sinx + siny) ^ 2 = a ^ 2 #

# -> sin ^ 2x + 2sinxsiny + sin ^ 2y = a ^ 2 #

Dan:

# (cosx + cosy) ^ 2 = b ^ 2 #

# -> cos ^ 2x + 2cosxcosy + cos ^ 2y = b ^ 2 #

Sekarang kita memiliki dua persamaan ini:

# sin ^ 2x + 2sinxsiny + sin ^ 2y = a ^ 2 #

# cos ^ 2x + 2cosxcosy + cos ^ 2y = b ^ 2 #

Jika kita menambahkannya bersama, kita memiliki:

# sin ^ 2x + 2sinxsiny + sin ^ 2y + cos ^ 2x + 2cosxcosy + cos ^ 2y = a ^ 2 + b ^ 2 #

Jangan biarkan ukuran persamaan ini membuat Anda marah. Cari identitas dan penyederhanaan:

# (sin ^ 2x + cos ^ 2x) + (2sinxsiny + 2cosxcosy) + (cos ^ 2y + sin ^ 2y) = a ^ 2 + b ^ 2 #

Sejak # sin ^ 2x + cos ^ 2x = 1 # (Identitas Pythagoras) dan # cos ^ 2y + sin ^ 2y = 1 # (Identitas Pythagoras), kita dapat menyederhanakan persamaan menjadi:

# 1 + (2sinxsiny + 2cosxcosy) + 1 = a ^ 2 + b ^ 2 #

# -> (2sinxsiny + 2cosxcosy) + 2 = a ^ 2 + b ^ 2 #

Kita dapat memperhitungkan faktor a #2# dua kali:

# 2 (sinxsiny + cosxcosy) + 2 = a ^ 2 + b ^ 2 #

# -> 2 ((sinxsiny + cosxcosy) +1) = a ^ 2 + b ^ 2 #

Dan bagi:

# (sinxsiny + cosxcosy) + 1 = (a ^ 2 + b ^ 2) / 2 #

Dan kurangi:

# sinxsiny + cosxcosy = (a ^ 2 + b ^ 2) / 2-1 #

Akhirnya, sejak #cos (x + y) = cosxcosy + sinxsiny #, kita punya:

#cos (x + y) = (a ^ 2 + b ^ 2) / 2-1 #

Diberikan

# sinx + siny = a ……. (1) #

# cosx + cosy = b ……. (2) #

Mengkuadratkan dan menambahkan (1) & (2)

# (cosx + cosy) ^ 2 + (sinx + siny) ^ 2 = a ^ 2 + b ^ 2 #

# => 2 (cosxcosy + sinxsiny) + 2 = a ^ 2 + b ^ 2 #

# => 2cos (x-y) = a ^ 2 + b ^ 2-2 …. (3) #

Mengkuadratkan dan Mengurangkan (1) dari (2)

# (cosx + cosy) ^ 2- (sinx + siny) ^ 2 = b ^ 2-a ^ 2 #

# => 2cos (x + y) + cos ^ 2x-sin ^ 2x + cos ^ 2y-sin ^ 2y = b ^ 2-a ^ 2 #

# => 2cos (x + y) + cos2x + cos2y = b ^ 2-a ^ 2 #

# => 2cos (x + y) + 2cos (x + y) cos (x-y) = b ^ 2-a ^ 2 #

# => cos (x + y) (2 + 2cos (x-y)) = b ^ 2-a ^ 2 #

(# "Dari (3)" 2cos (x-y) = a ^ 2 + b ^ 2-2 #)

# => cos (x + y) (2 + b ^ 2 + a ^ 2-2) = b ^ 2-a ^ 2 #

# => cos (x + y) (b ^ 2 + a ^ 2) = b ^ 2-a ^ 2 #

# => cos (x + y) = (b ^ 2-a ^ 2) / (b ^ 2 + a ^ 2) #

Menjawab:

#cos (x + y) = (b ^ 2-a ^ 2) / (b ^ 2 + a ^ 2) #.

Penjelasan:

# sinx + siny = a rRr 2sin ((x + y) / 2) cos ((x-y) / 2) = a ……… (1) #.

# cosx + cosy = b rArr 2cos ((x + y) / 2) cos ((x-y) / 2) = b ………. (2) #.

Pemisah #(1)# oleh #(2)#, kita punya, #tan ((x + y) / 2) = a / b #.

Sekarang, #cos (x + y) = {1-tan ^ 2 ((x + y) / 2)} / {1 + tan ^ 2 ((x + y) / 2)} #

# = (1-a ^ 2 / b ^ 2) / (1 + a ^ 2 / b ^ 2) = (b ^ 2-a ^ 2) / (b ^ 2 + a ^ 2) #.

Nikmati Matematika.!