Bagaimana Anda mengintegrasikan int_1 ^ e 1 / (x sqrt (ln ^ 2x)) dx?

Bagaimana Anda mengintegrasikan int_1 ^ e 1 / (x sqrt (ln ^ 2x)) dx?
Anonim

Menjawab:

Integral ini tidak ada.

Penjelasan:

Sejak #ln x> 0 # dalam interval # 1, e #, kita punya

#sqrt {ln ^ 2 x} = | ln x | = Dalam x #

di sini, sehingga integral menjadi

# int_1 ^ e dx / {x ln x} #

Pengganti #ln x = u #, kemudian # dx / x = du # yang seperti itu

# int_1 ^ e dx / {x ln x} = int_ {ln 1} ^ {ln e} {du} / u = int_0 ^ 1 {du} / u #

Ini adalah integral yang tidak tepat, karena integrand menyimpang pada batas bawah. Ini didefinisikan sebagai

#lim_ {l -> 0 ^ +} int_l ^ 1 {du} / u #

jika ini ada. Sekarang

#int_l ^ 1 {du} / u = ln 1 - ln l = -ln l #

karena ini berbeda dalam batas #l -> 0 ^ + #, integral tidak ada.

Menjawab:

# pi / 2 #

Penjelasan:

Integral # int_1 ^ e ("d" x) / (xsqrt (1-ln ^ 2 (x)) #.

Pengganti dulu # u = ln (x) # dan # "d" u = ("d" x) / x #.

Jadi, sudah

#int_ (x = 1) ^ (x = e) ("d" u) / sqrt (1-u ^ 2) #

Sekarang, gantikan # u = sin (v) # dan # "d" u = cos (v) "d" v #.

Kemudian, #int_ (x = 1) ^ (x = e) (cos (v)) / (sqrt (1-sin ^ 2 (v))) "d" v = int_ (x = 1) ^ (x = e) "d" v # sejak # 1-sin ^ 2 (v) = cos ^ 2 (v) #.

Terus, kita punya

# v _ (x = 1) ^ (x = e) = arcsin (u) _ (x = 1) ^ (x = e) = arcsin (ln (x)) _ (x = 1) ^ (x = e) = arcsin (ln (e)) - arcsin (ln (1)) = pi / 2-0 = pi / 2 #